Skip to content

Latest commit

 

History

History
141 lines (120 loc) · 18 KB

meta_qa.md

File metadata and controls

141 lines (120 loc) · 18 KB

MetaQA

MoviE Text Audio QA (MetaQA)[1] contains more than 400K questions for both single and multi-hop reasoning, and provides more realistic text and audio versions. MetaQA serves as a comprehensive extension of WikiMovies., in English language. Containing 400,000+ in Text, MP3 file format.

According to the original paper, there are three versions of this dataset: Vanilla, NTM and Audio. Vanilla is a composed of original WikiMovies as 1-hop dataset, 21 types of 2-hop questions and 15 types of 3-hop questions. NTM is generated by translating the Vanilla set using machine translation models. Audio subset is generated by audio datasets with the help of text-to-speech (TTS) system.

If not specified, dataset below refers to Vanilla set of MetaQA.

This dataset can be downloaded via the link. Note that this dataset is divided into 1-hop, 2-hop and 3-hop in the original paper: Variational reasoning for question answering with knowledge graph.

1-hop

Leaderboard

Model / System Year Hits@1 F1 Exact Match Language Reported by
SSKGQA 2022 99.1 - - EN Mingchen Li and Jonathan Shihao Ji
NRQA 2022 98.1 - - EN Guo et al.
DCRN 2022 97.5 - - EN Mingchen Li and Jonathan Shihao Ji
VRN 2017 97.5 - - EN Zhang et al.
EmbedKGQA 2020 97.5 - - EN Saxena et al.
QAGCN 2022 97.3 - - EN Wang et al.
NSM+p 2021 97.3 - - EN He et al.
QNRKGQA 2022 97.3 - - EN Ma et al.
NSM+h 2021 97.2 - - EN He et al.
Edge-aware GNN 2022 97.2 98.5 - EN Zhang et al.
GlobalGraph 2022 99.0 97.6 - EN Zhang et al.
2HR-DR 2022 98.8 97.3 - EN Zhang et al.
SGReader 2022 96.7 96.0 - EN Zhang et al.
GRAFT-Net 2022 97.4 91.0 - EN Zhang et al.
NSM 2021 97.1 - - EN He et al.
SRN 2020 97.0 - - EN Qiu et al.
GraftNet 2018 97.0 - - EN Sun et al.
PullNet 2019 97.0 - - EN Sun et al.
MINERVA 2022 96.3 - - EN Wang et al.
ReifKB 2020 96.2 - - EN Cohen et al.
KV-MemNN 2022 96.2 - - EN Mingchen Li and Jonathan Shihao Ji
TransferNet 2022 96.0 - - EN Mingchen Li and Jonathan Shihao Ji
Borders et al. 's QA system 2017 95.7 - - EN Zhang et al.
KV-MemNN 2017 95.8 - - EN Zhang et al.
AlAgha, 2022 2022 95.4 - - EN AlAgha, 2022
KGQA Based on Query Path Generation 2022 93.9 - - EN Yang et al.
IRN 2022 85.9 - - EN Wang et al.
Supervised embedding 2017 54.4 - - EN Zhang et al.
T5+KG 2022 - - 71.47 EN Moiseev et al.
T5 2022 - - 24.5 EN Moiseev et al.
T5+C4 2022 - - 23.53 EN Moiseev et al.

2-hop

Leaderboard

Model / System Year Hits@1 F1 Exact Match Language Reported by
KGQA Based on Query Path Generation 2022 99.9 - - EN Yang et al.
PullNet 2019 99.9 - - EN Sun et al.
DCRN 2022 99.9 - - EN Mingchen Li and Jonathan Shihao Ji
NSM 2021 99.9 - - EN He et al.
NSM+p 2021 99.9 - - EN He et al.
NSM+h 2021 99.9 - - EN He et al.
QAGCN 2022 99.9 - - EN Wang et al.
QNRKGQA 2022 99.9 - - EN Ma et al.
QNRKGQA+h 2022 99.9 - - EN Ma et al.
SSKGQA 2022 99.7 - - EN Mingchen Li and Jonathan Shihao Ji
EmbedKGQA 2020 98.8 - - EN Saxena et al.
TransferNet 2022 98.5 - - EN Mingchen Li and Jonathan Shihao Ji
NRQA 2022 97.5 - - EN Guo et al.
Edge-aware GNN 2022 96.8 93.7 - EN Zhang et al.
GlobalGraph 2022 95.5 83.0 - EN Zhang et al.
2HR-DR 2022 93.7 81.4 - EN Zhang et al.
SGReader 2022 80.7 79.8 - EN Zhang et al.
GraftNet 2022 94.8 72.7 - EN Zhang et al.
ReifKB+mask 2020 95.4 - - EN Cohen et al.
SRN 2020 95.1 - - EN Qiu et al.
GraftNet 2018 94.8 - - EN Sun et al.
AlAgha, 2022 2022 94.1 - - EN AlAgha, 2022
MINERVA 2022 92.9 - - EN Wang et al.
VRN 2017 89.9 - - EN Zhang et al.
VRN 2022 89.2 - - EN Mingchen Li and Jonathan Shihao Ji
KV-MemNN 2022 82.7 - - EN Mingchen Li and Jonathan Shihao Ji
Borders et al. 's QA system 2017 81.8 - - EN Zhang et al.
ReifKB 2020 81.1 - - EN Cohen et al.
KV-MemNN 2022 76.0 - - EN Zhang et al.
IRN 2022 71.3 - - EN Wang et al.
Supervised embedding 2017 29.1 - - EN Zhang et al.
KV-MemNN 2017 25.1 - - EN Zhang et al.
T5+KG 2022 - - 33.57 EN Moiseev et al.
T5+C4 2022 - - 32.78 EN Moiseev et al.
T5 2022 - - 32.65 EN Moiseev et al.

3-hop

Leaderboard

Model / System Year Hits@1 F1 Exact Match Language Reported by
SSKGQA 2022 99.6 - - EN Mingchen Li and Jonathan Shihao Ji
DCRN 202 99.3 - - EN Mingchen Li and Jonathan Shihao Ji
NSM 2021 98.9 - - EN He et al.
NSM+p 2021 98.9 - - EN He et al.
NSM+h 2021 98.9 - - EN He et al.
QNRKGQA 2022 98.9 - - EN Ma et al.
QNRKGQA+h 2022 98.9 - - EN Ma et al.
KGQA Based on Query Path Generation 2022 98.5 - - EN Yang et al.
QAGCN 2022 97.6 - - EN Wang et al.
Edge-aware GNN 2022 96.3 91.0 - EN Zhang et al.
NRQA 2022 96.1 - - EN Guo et al.
EmbedKGQA 2020 94.8 - - EN Saxena et al.
TransferNet 2022 94.7 - - EN Mingchen Li and Jonathan Shihao Ji
AlAgha, 2022 2022 93.4 - - EN AlAgha, 2022
PullNet 2022 91.4 - - EN Sun et al.
GlobalGraph 2022 81.4 62.4 - EN Zhang et al.
ReifKB+mask 2020 79.7 - - EN Cohen et al.
GraftNet 2022 77.8 56.1 - EN Zhang et al.
GraftNet 2022 77.7 - - EN Mingchen Li and Jonathan Shihao Ji
GraftNet 2018 77.2 - - EN Sun et al.
SRN 2020 75.2 - - EN Qiu et al.
ReifKB 2020 72.3 - - EN Cohen et al.
VRN 2017 62.5 - - EN Zhang et al.
SGReader 2022 61.0 58.0 - EN Zhang et al.
MINERVA 2022 55.2 - - EN Wang et al.
KV-MemNN 2022 48.9 - - EN Mingchen Li and Jonathan Shihao Ji
IRN 2022 35.6 - - EN Wang et al.
Supervised embedding 2017 28.9 - - EN Zhang et al.
Borders et al. 's QA system 2017 28.4 - - EN Zhang et al.
KV-MemNN 2017 10.1 - - EN Zhang et al.
T5+KG 2022 - - 43.41 EN Moiseev et al.
T5 2022 - - 42.31 EN Moiseev et al.
T5+C4 2022 - - 39.66 EN Moiseev et al.

References

[1] Zhang, Yuyu, Hanjun Dai, Zornitsa Kozareva, Alexander J. Smola, and Le Song. Variational reasoning for question answering with knowledge graph. In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

Go back to the README