forked from mayurj747/oraclenet-analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoraclenet_rnn_pytorch.py
152 lines (126 loc) · 5.49 KB
/
oraclenet_rnn_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
import numpy.matlib as mat
from tqdm import tqdm
import random
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch import optim
from path_generator import main as model_eval
# make variable types for automatic setting to GPU or CPU, depending on GPU availability
def set_torch_types():
use_cuda = torch.cuda.is_available()
type_dict = {
'FloatTensor': torch.cuda.FloatTensor if use_cuda else torch.FloatTensor,
'LongTensor' : torch.cuda.LongTensor if use_cuda else torch.LongTensor,
'ByteTensor' : torch.cuda.ByteTensor if use_cuda else torch.ByteTensor
}
return type_dict
class ProcessData:
def __init__(self, filename):
self.load_path = filename
self.trainData = np.load(self.load_path, encoding='latin1').tolist()
self.num_dim = self.trainData[0].shape[1]
self.TrainX = None
self.TrainY = None
def formatData(self, print_shapes):
"""remove all NoneTypes from training set"""
self.trainData = [x for x in self.trainData if x is not None]
p = 0
for _ in range(0, len(self.trainData)): p += len(self.trainData[_])
reformated_trainData = np.zeros((p, self.num_dim))
goals_trainData = np.zeros((p, self.num_dim))
count = 0
for i in tqdm(range(1, len(self.trainData))):
target_length = len(self.trainData[i])
reformated_trainData[count:count + target_length] = self.trainData[i]
goals_trainData[count:count + target_length] = \
mat.repmat(self.trainData[i][-1], target_length, 1)
count += target_length
TrainX = np.concatenate((reformated_trainData, goals_trainData), axis=1)
TrainY = np.roll(reformated_trainData, -1, axis=0)
self.TrainY = np.expand_dims(TrainY, axis=0)
self.TrainX = np.expand_dims(TrainX, axis=0)
if print_shapes:
print('TrainX shape: ', self.TrainX.shape)
print('TrainY shape: ', self.TrainY.shape)
return self.TrainX, self.TrainY
def sampleBatches(self, batch_size):
offset = random.randint(0, self.TrainY.shape[1]-batch_size)
idx = np.arange(batch_size)
return self.TrainX[:, idx + offset, :], self.TrainY[:, idx + offset, :]
class SimpleRNN(nn.Module):
def __init__(self, inp_dim, hidden_size, op_dim, stacked_layers):
super(SimpleRNN, self).__init__()
self.hidden_size = hidden_size
self.op_dim = op_dim
self.inp_dim = inp_dim
self.inp = nn.Linear(inp_dim, hidden_size)
self.rnn = nn.LSTM(hidden_size, hidden_size, stacked_layers, dropout=0.0)
self.out = nn.Linear(hidden_size, op_dim)
def step(self, input, hidden=None):
input = self.inp(input.view(-1, self.inp_dim)).unsqueeze(1)
output, hidden = self.rnn(input, hidden)
output = self.out(output.squeeze(1))
return output, hidden
def forward(self, inputs, hidden=None, force=True, steps=0):
if 'FloatTensor' not in locals(): FloatTensor = set_torch_types()['FloatTensor']
if force or steps == 0: steps = len(inputs)
outputs = Variable(torch.zeros(steps, list(inputs.size())[1], self.op_dim)).type(FloatTensor)
for i in range(steps):
if force or i == 0:
input = inputs[i]
else:
input = output
output, hidden = self.step(input, hidden)
outputs[i] = output
return outputs, hidden
if __name__ == '__main__':
types = set_torch_types()
FloatTensor = types['FloatTensor']
obstacle_path = 'random_squares_1.npy'
data_filename = 'training_data_5k_r_sq_1.npy'
cx = cy = 100
trainingData = ProcessData(filename=data_filename)
train_X, train_Y = trainingData.formatData(print_shapes=True)
# ## HYPER-PARAMETER DEFINITIONS ###
hid = 100
n_epochs = 2000
n_iters = 100 # iterations per epoch
batch_size = 1000
learning_rate = 0.02
stacked_hidden_layers = 2
# #################################
model = SimpleRNN(inp_dim=train_X.shape[-1],
hidden_size=hid,
op_dim=train_Y.shape[-1],
stacked_layers=stacked_hidden_layers)
criterion = nn.MSELoss()
optimizer = optim.Adadelta(model.parameters())
model.cuda()
losses = np.zeros(n_epochs) # For plotting
success_tracker = np.zeros(n_epochs)
for epoch in range(n_epochs):
for iter in range(n_iters):
_inputs, _targets = trainingData.sampleBatches(batch_size=batch_size)
inputs = Variable(torch.from_numpy(_inputs)).type(FloatTensor)
targets = Variable(torch.from_numpy(_targets)).type(FloatTensor)
# Use teacher forcing 50% of the time
force = random.random() < 0.5
outputs, hidden = model(inputs, None, force)
optimizer.zero_grad()
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
losses[epoch] += loss.data[0]
if epoch > 0:
print(epoch, loss.data[0])
torch.save(model.state_dict(), './Models/test_oralenet.pkl')
## test online performance of network
_, validity = model_eval(cx, cy, obstacle_path, model,
num_evals=100, eval_mode=True, plotopt=False)
success_tracker[epoch] = validity
print('Success Rate trends: ', validity)
plt.figure()
plt.plot(validity)