-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathCovColl.m
976 lines (906 loc) · 38 KB
/
CovColl.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
classdef CovColl <handle
% COVCOLL a collection of covariates. Allows multiple covariates that were
% recorded simultaneously to be treated as single unit. Operations such
% as resampling, setting time windows, etc can then be performed on the
% collection as a whole.
%
% When covariates are accessed through the getCov function, copies of the covariates are return
% the original covariates remain intact. The covariate collection
% remembers the masked states, shifts, etc. so that these are applied
% to the signal right before it is returned.
%
% <a href="matlab: methods('CovColl')">methods</a>
% <a href="matlab:web('CovCollExamples.html', '-helpbrowser')">CovColl Examples</a>
%
% see also <a href="matlab:help('SignalObj')">SignalObj</a>, <a href="matlab:help('Covariate')">Covariate</a>
%
% Reference page in Help browser
% <a href="matlab: doc('CovColl')">doc CovColl</a>
%
%
% nSTAT v1 Copyright (C) 2012 Masschusetts Institute of Technology
% Cajigas, I, Malik, WQ, Brown, EN
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License as published
% by the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
% See the GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
properties (SetAccess = private)
covArray; %An array of covariate objects
covDimensions; % at each position has the number of dimensions of each covariate
numCov; % a running count of how many covariates are in object
minTime; % Time data occurs
maxTime; % Time last data point occurs in object
covMask; % covariates that are currently selected
covShift;% time lag for covariates
sampleRate % sampleRate for all covariates
end
properties (Hidden)
originalSampleRate;
originalMinTime;
originalMaxTime;
end
methods
function ccObj=CovColl(cov,varargin)
% ccObj=CovColl(cov,varargin)
% Creates a collection of covariates from a cell array of
% objects of the class Covariate <a href="matlab:help('Covariate')">Covariate</a>
if(nargin<1)
cov=[];
end
ccObj.numCov = 0;
ccObj.minTime=inf;
ccObj.maxTime=-inf;
ccObj.originalSampleRate=[];
ccObj.originalMinTime = [];
ccObj.originalMaxTime = [];
ccObj.covArray=[];
ccObj.covDimensions=[];
ccObj.covMask = [];
ccObj.covShift = 0;
ccObj.addToColl(cov);
if(nargin>1)
for i=1:length(varargin)
ccObj.addToColl(varargin{i});
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Set functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function setMinTime(ccObj,minTime)
% setMinTime(ccObj,minTime)
% sets the minimum time for all the covariates in the
% collection to minTime
if(nargin<2 || isempty(minTime))
minTime=ccObj.findMinTime;
end
if(isempty(ccObj.originalMinTime))
ccObj.originalMinTime=ccObj.minTime;
end
% for i=1:ccObj.numCov
% tempC = ccObj.covArray{i};
% tempC.setMinTime(minTime);
% end
ccObj.minTime=minTime;
end
function setMaxTime(ccObj,maxTime)
% setMaxTime(ccObj,maxTime)
% sets the maximum time for all the covariates in the
% collection to maxTime
if(nargin<2 || isempty(maxTime))
maxTime=ccObj.findMaxTime;
end
if(isempty(ccObj.originalMaxTime))
ccObj.originalMaxTime=ccObj.maxTime;
end
% for i=1:ccObj.numCov
% tempC =ccObj.covArray{i};
% tempC.setMaxTime(maxTime);
% end
ccObj.maxTime = maxTime;
end
function setSampleRate(ccObj, sampleRate)
% setSampleRate(ccObj, sampleRate)
% resample all of the covariates to the specified sampleRate
if(isempty(ccObj.originalSampleRate))
ccObj.originalSampleRate=ccObj.sampleRate;
end
% minTime = ccObj.minTime;
% maxTime = ccObj.maxTime;
ccObj.sampleRate = sampleRate;
ccObj.enforceSampleRate;
% ccObj.restrictToTimeWindow(minTime,maxTime);
end
function setMask(ccObj,cellInput)
% setMask(ccObj,cellInput)
% specify which covariates are to be used
selectorCell = ccObj.generateSelectorCell(cellInput);
ccObj.setMasksFromSelector(selectorCell);
for i=1:ccObj.numCov
cov=ccObj.getCov(i);
cov.setMask(ccObj.covMask{i})
end
end
function dataMask=getCovDataMask(ccObj,identifier)
% dataMask=getCovDataMask(ccObj,identifier)
% returns the dataMask for the covariate specified by
% indentifier
cov=ccObj.covArray{identifier};
dataMask = cov.dataMask;
end
function answer=isCovMaskSet(ccObj)
% answer=isCovMaskSet(ccObj)
% returns 1 if any Covariate has any component that is masked
% away, otherwise returns 0.
answer =0;
for i=1:ccObj.numCov
if(any(ccObj.covMask{i}==0))
answer =1;
break;
end
end
end
function n=nActCovar(ccObj)
% n=nActCovar(ccObj)
% Returns the effective number of a covariates. Any
% covariate with at least one unmasked component
% contributes to n. Any covariate with all components
% masked away is not counted.
selectorArray = ccObj.getSelectorFromMasks;
n=numActCov(selectorArray);
end
function maskAwayCov(ccObj,identifier)
% maskAwayCov(ccObj,identifier)
% masks away all the components of the covariates specified by
% indentifier
cov=ccObj.getCov(identifier);
if(isa(cov,'Covariate'))
cov = {cov}; % make it a cell even if just one
end
for j=1:length(cov)
covIndex = ccObj.getCovIndicesFromNames(cov{j}.name);
newMask = cell(1,ccObj.numCov);
for i=1:ccObj.numCov
if(i==covIndex)
newMask{i} = zeros(1,length(ccObj.covMask{i}));
else
newMask{i} = ccObj.covMask{i};
end
end
ccObj.setMask(ccObj.getSelectorFromMasks(newMask));
end
end
function ccObj2 = copy(ccObj)
cov = cell(length(ccObj.numCov),1);
for i=1:ccObj.numCov
cov{i} = ccObj.getCov(i).copySignal;
end
ccObj2 = CovColl(cov);
end
function maskAwayOnlyCov(ccObj,identifier)
% maskAwayOnlyCov(ccObj,identifier)
% makes all components of all covariates visible and then masks
% away the covariates specified by indentifier.
ccObj.resetMask;
ccObj.maskAwayCov(identifier);
end
function maskAwayAllExcept(ccObj, identifier)
% maskAwayAllExcept(ccObj, identifier)
% masks away all covariates except that specified by
% identifier
offset=0;
maskList = zeros(1,ccObj.numCov - length(identifier));
for i =1:ccObj.numCov
if(~any(i==identifier))% i is not in any element of identifier
offset=offset+1;
maskList(offset) = i;
end
end
ccObj.maskAwayOnlyCov(maskList);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Get Functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cov = getCov(ccObj, identifier)
% cov = getCov(ccObj, identifier)
% returns a single covariate if only one is requested.
% Otherwise returns a cell array of covariates, one for each
% identifier.
% The identifier can be:
% doubles: specifying the number of the covariate in the
% collection
% strings: specifying the name of the covariate
% cell array of strings: specifying multiple covariates by
% their name.
holdVals=1;
if(isa(identifier,'double'))
if(length(identifier)==1)
cov=ccObj.covArray{identifier}.copySignal;
cov.setMask(ccObj.covMask{identifier});
if(ccObj.covShift~=0)
cov=cov.shift(ccObj.covShift);
end
if(cov.minTime~=ccObj.minTime || cov.maxTime~=ccObj.maxTime)
cov=cov.getSigInTimeWindow(ccObj.minTime,ccObj.maxTime,holdVals);
end
% cov=cov.resample(ccObj.sampleRate);
else
cov=cell(1,length(identifier));
for i=1:length(identifier)
cov{i}=ccObj.getCov(identifier(i));
%cov{i}=ccObj.covArray{identifier(i)};
end
end
elseif(isa(identifier,'char'))
%cov=ccObj.covArray{ccObj.getCovIndFromName(identifier)};
cov=ccObj.getCov(ccObj.getCovIndFromName(identifier));
elseif(isa(identifier,'cell'))
cov=cell(1,length(identifier));
if(isa(identifier{1},'char'))
for i=1:length(identifier)
%cov{i}=ccObj.covArray{ccObj.getCovIndFromName(identifier{i})};
cov{i}=ccObj.getCov(identifier{i});
end
else
error('Identifier cells must contain strings!');
end
end
end
function ind = getCovIndicesFromNames(ccObj,name)
% ind = getCovIndicesFromNames(ccObj,name)
% returns a vector of indices for each covariate name
% specified.
if(isa(name,'cell'))
if(isa(name{1},'char'))
ind=zeros(1,length(name));
for i=1:length(name)
ind(i)=ccObj.getCovIndFromName(name{i});
end
else
error('Cell must contain strings!');
end
elseif(isa(name,'char'))
ind=ccObj.getCovIndFromName(name);
else
error('Need either cells with strings or a single string!');
end
end
function dim = getCovDimension(ccObj,identifier)
% dim = getCovDimension(ccObj,identifier)
% returns a vector with the dimension of covariate i at
% position i.
covs = ccObj.getCov(identifier);
dim = zeros(1,length(covs));
for i=1:length(covs)
dim(i)=covs{i}.dimension;
end
end
function l = getAllCovLabels(ccObj)
% l = getAllCovLabels(ccObj)
% returns a cell array of strings with the covariate names
offset=0;
l=cell(1,length(ccObj.flattenCovMask));
for i=1:ccObj.numCov
tempCov = ccObj.getCov(i);
for j=1:tempCov.dimension
l{j+offset} = tempCov.dataLabels{j};
end
offset=offset+tempCov.dimension;
end
end
function l = getCovLabelsFromMask(ccObj)
% l = getCovLabelsFromMask(ccObj)
% returns a list of all the the dataLabels that are currently
% visible (i.e. unmasked).
offset=0;
l={};
for i=1:ccObj.numCov
tempCov = ccObj.getCov(i);
for j=1:tempCov.dimension
if(ccObj.covMask{i}(j)==1)
offset=offset+1;
l{offset} = tempCov.dataLabels{j};
end
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Utility Functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function structure = toStructure(ccObj)
fnames = fieldnames(ccObj);
ccObj.resetMask; %otherwise masked data will not get saved!!
for i=1:length(fnames)
currObj = ccObj.(fnames{i});
if(isa(currObj,'double')||isa(currObj,'cell'))
if(strcmp(fnames{i},'covArray'))
for j=1:ccObj.numCov
structure.(fnames{i}){j} = ccObj.(fnames{i}){j}.toStructure;
end
else
structure.(fnames{i}) = currObj;
end
end
end
end
function minTime = findMinTime(ccObj)
% minTime = findMinTime(ccObj)
% finds the minimum minTime from all covariates
minTime=inf;
for i=1:ccObj.numCov
minTime = min(ccObj.covArray{i}.minTime,minTime);
end
minTime = minTime+ccObj.covShift;
end
function maxTime = findMaxTime(ccObj)
% maxTime = findMaxTime(ccObj)
% finds that maximum maxTime from all covariates.
maxTime=-inf;
for i=1:ccObj.numCov
maxTime = max(ccObj.covArray{i}.maxTime+ccObj.covShift,maxTime);
end
maxTime = maxTime+ccObj.covShift;
end
function addToColl(ccObj,cov)
% addToColl(ccObj,cov)
% add one or several covariates to the current collection.
% can specify cell of covariates, a single covariate, or a
% covariate CovColl.
if(~isempty(cov))
if(isa(cov,'cell'))
ccObj.addCovCellToColl(cov);
elseif(isa(cov,'Covariate'))
ccObj.addSingleCovToColl(cov);
elseif(isa(cov,'CovColl'));
ccObj.addCovCollection(cov);
else
error('Can only add covariates to CovColl');
end
end
ccObj.enforceSampleRate;
end
function addCovCollection(ccObj,cov)
% addCovCollection(ccObj,cov)
% adds a CovColl to the current collection
covCell=cov.covArray;
ccObj.addCovCellToColl(covCell);
end
function answer = isCovPresent(ccObj,cov)
% answer = isCovPresent(ccObj,cov)
% returns 1 if covariate is present in the CovColl.
% inputs can be a covariate, a string corresponding to the name
% of the covariate, or the number of the covariate in the
% collection.
if(isa(cov,'Covariate'))
if(strcmp(cov.name,''))
display('Covariate does not have name');
answer=0;
else
index=ccObj.getCovIndFromName(cov.name);
if(isempty(index))
answer = 0;
else
answer = 1;
end
end
elseif(isa(cov,'char'))
covar=ccObj.getCov(cov);
answer=ccObj.isCovPresent(covar);
elseif(isa(cov,'double'))
if((cov>0)&&(cov<ccObj.numCov))
answer=1;
else
answer=0;
end
else
error('Need either covariate class or name of covariate or index of covariate');
end
end
function resample(ccObj,sampleRate)
% resample(ccObj,sampleRate)
% resamples all the covariates in the collection to the new
% sampleRate.
ccObj.setSampleRate(sampleRate);
ccObj.enforceSampleRate;
end
function restoreToOriginal(ccObj)
% restoreToOriginal(ccObj)
% returns the CovColl to the original minTime, maxTime, and
% sampleRate. covShift is returned to zero.
% minTime=inf;
% maxTime=-inf;
%minTime = ccObj.findMinTime;
%maxTime = ccObj.findMaxTime;
% for i=1:ccObj.numCov
% tempCov = ccObj.getCov(i);
% tempCov.restoreToOriginal;
% minTime=min(tempCov.minTime,minTime);
% maxTime=max(tempCov.maxTime,maxTime);
% end
ccObj.covShift = 0;
ccObj.setSampleRate(ccObj.originalSampleRate);
ccObj.setMinTime(ccObj.findMinTime);
ccObj.setMaxTime(ccObj.findMaxTime);
%ccObj.setMinTime(minTime);
%ccObj.setMaxTime(maxTime);
end
function restrictToTimeWindow(ccObj,wMin,wMax)
% restrictToTimeWindow(ccObj,wMin,wMax)
% sets minTime to wMin, and maxTime to wMax
ccObj.setMinTime(wMin);
ccObj.setMaxTime(wMax);
% for i=1:ccObj.numCov
% ccObj.getCov(i).setMinTime(wMin);
% ccObj.getCov(i).setMaxTime(wMax);
% end
end
function removeCovariate(ccObj,identifier)
% removeCovariate(ccObj,identifier)
% removes the specified covariate from the collection
ccObj.removeFromColl(identifier);
end
function resetMask(ccObj)
% resetMask(ccObj)
% makes all covariates visible
for i=1:ccObj.numCov
ccObj.covArray{i}.resetMask;
ccObj.covMask{i}=ccObj.getCovDataMask(i);
end
end
function enforceSampleRate(ccObj)
% enforceSampleRate(ccObj)
% makes sure that all covariates have the same sampleRate as
% that in ccObj.sampleRate;
currRate = ccObj.sampleRate;
for i=1:ccObj.numCov;
currCov = ccObj.covArray{i}; %change the actual sample rate of the objects
if(and(and(round(currCov.sampleRate*currRate)/currRate~=round(ccObj.sampleRate*currRate)/currRate,~isnan(currCov.sampleRate)),~isnan(ccObj.sampleRate)))
currCov.resampleMe(ccObj.sampleRate);
end
end
end
function ccObj = setCovShift(ccObj, deltaT, identifier)
% setCovShift(ccObj, deltaT, identifier)
% Note: identifier currently not used
% shifts ALL covariates by deltaT
if(nargin<3)
identifier=ccObj.getSelectorFromMasks;
end
% covars=ccObj.getCov(identifier);
% for i=1:length(covars)
% covars{i}.shift(deltaT);
% end
ccObj.resetCovShift;
ccObj.covShift=deltaT;
ccObj.setMinTime(ccObj.minTime+deltaT); %make sure minTime is consistent
ccObj.setMaxTime(ccObj.maxTime+deltaT); %make sure maxTime is consistent
end
function resetCovShift(ccObj)
ccObj.covShift=0;
ccObj.setMinTime; %make sure minTime is consistent
ccObj.setMaxTime; %make sure maxTime is consistent
end
function flatMask = flattenCovMask(ccObj)
covMask=ccObj.covMask;
if(isa(covMask,'double'))
flatMask=covMask;
elseif(isa(covMask,'cell'))
flatMask=[];
for i=1:length(covMask)
flatMask = [flatMask covMask{i}];
end
else
error('covMask must be either a cell or a double');
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Change of Representation Functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function dataMat = dataToMatrix(ccObj,repType,dataSelector,varargin)
% dataMat = dataToMatrix(ccObj,repType,dataSelector,varargin)
% returns the matrix representation of the CovColl.
% repType: 'standard' or 'zero-mean'
% dataSelector: same as input to getCov
if(nargin<3)
dataSelector=ccObj.getSelectorFromMasks;
end
if(nargin<2)
repType='standard';
end
if(ccObj.isaSelectorCell(dataSelector))
dataMat=ccObj.dataToMatrixFromSel(repType,dataSelector,varargin{:});
else %we assume these are names
dataMat=ccObj.dataToMatrixFromNames(repType,dataSelector,varargin{:});
end
end
function dataMat = dataToMatrixFromNames(ccObj,repType,dataSelector,varargin)
selectorCell=ccObj.generateSelectorCell(dataSelector);
dataMat=ccObj.dataToMatrixFromSel(repType, selectorCell, varargin{:});
end
function dataMat = dataToMatrixFromSel(ccObj,repType, selectorCell,varargin)%, binwidth,minTime,maxTime)
% if(nargin<6)
% maxTime=ccObj.maxTime;
% end
% if(nargin<5)
% minTime=ccObj.minTime;
% end
% if(nargin<4)
% binwidth=1/ccObj.sampleRate;
% end
if(nargin<3)
if(ccObj.isCovMaskSet)
selectorCell = ccObj.getSelectorFromMasks;
else
for i=1:ccObj.numCov
%selectorCell{i} = 1:ccObj.covArray{i}.dimension;
selectorCell{i} = 1:ccObj.getCov(i).dimension;
end
end
end
if(nargin<2)
repType='standard';
end
dimTot = sumDimensions(selectorCell);
nCov = numActCov(selectorCell);
covInd = covIndFromSelector(selectorCell);
maxTime=ccObj.getCov(1).maxTime;
minTime=ccObj.getCov(1).minTime;
binwidth=1/ccObj.getCov(1).sampleRate;
% dataMat=zeros(floor(abs(maxTime-minTime)/binwidth)+1,dimTot);
dataMat=zeros(length(ccObj.getCov(1).getSigRep.time),dimTot);
% size(dataMat)
for i=1:nCov
if(i==1)
currentOffset =0;
else
currentOffset = sumDimensions(selectorCell,covInd(i-1));
end
%covariate.getCovMatrix(covObj,repType, selectorArray,binwidth,minTime,maxTime)
data=ccObj.getCov(covInd(i)).getSigRep(repType).dataToMatrix(selectorCell{covInd(i)});%,binwidth,minTime,maxTime);
endInd = min(size(dataMat,1),size(data,1));
dataMat(1:endInd,currentOffset+(1:length(selectorCell{covInd(i)})))=data(1:endInd,:);
end
end
function structure=dataToStructure(ccObj,selectorCell,binwidth, minTime, maxTime)
% structure=dataToStructure(ccObj,selectorCell,binwidth, minTime, maxTime)
% structure representation of the CovColl.
if(nargin<5)
maxTime = ccObj.maxTime;
end
if(nargin<4)
minTime = ccObj.minTime;
end
if(nargin<3)
binwidth = 1/ccObj.getCov(1).getSigRep.sampleRate;
end
if(nargin<2)
if(ccObj.isCovMaskSet)
selectorCell = ccObj.getSelectorFromMasks;
else
for i=1:ccObj.numCov
%selectorCell{i} = 1:ccObj.covArray{i}.dimension;
selectorCell{i} = 1:ccObj.getCov(i).dimension;
end
end
end
repType = 'standard';
dataMatrix =ccObj.dataToMatrix(repType, selectorCell, binwidth,minTime,maxTime);
%Convert to a standard matlab structure
structure.time=ccObj.getCov(1).time;
structure.signals.values=dataMatrix;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Plotting Functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function plotHandle = plot(ccObj,handle,repType,selectorCell)
if(nargin<4)
if(ccObj.isCovMaskSet)
selectorCell = ccObj.getSelectorFromMasks;
else
for i=1:ccObj.numCov
%selectorCell{i} = 1:ccObj.covArray{i}.dimension;
selectorCell{i} = 1:ccObj.getCov(i).dimension;
end
end
end
if(nargin<3)
repType='standard';
end
if(nargin<2)
handle = gcf;
end
%plotHandle = figure(handle);
nCov=numActCov(selectorCell);
covInd = covIndFromSelector(selectorCell);
if(handle == gcf) %given a figure to plot in;
for i=1:nCov
if(nCov==1)
%no subplot
elseif(nCov==2)
subplot(2,1,i)
elseif(nCov==3)
subplot(3,1,i)
elseif(nCov==4)
subplot(2,2,i)
else
figure;
end
ch=gca;
% h=plot(sObj,selectorArray,plotProps,handle)
currentObj = ccObj.getCov(covInd(i));
plotHandle=currentObj.plot([],[],ch); %default selectorArray and default plotProps
end
elseif(length(handle)==nCov) %got a subplot for each covariate
for i = 1:length(handle)
currentObj = ccObj.getCov(covInd(i)).getSigRep(repType);
axes(handle(i));
plotHandle=currentObj.plot(selectorCell{i},[],handle(i));
end
end
end
end
methods (Access = private)
function setMasksFromSelector(ccObj,selectorCell)
if(length(selectorCell)==ccObj.numCov);
ccObj.covMask=ccObj.getCovMaskFromSelector(selectorCell);
end
end
function cMask =getCovMaskFromSelector(ccObj,selectorCell)
cMask = cell(1,ccObj.numCov);
for i=1:length(cMask)
cMask{i}=zeros(1,length(ccObj.getCov(i).dataMask));
if(~isempty(selectorCell{i}))
if(length(selectorCell{i})>1 && max(selectorCell{i})==1)
cMask{i}(selectorCell{i}==1)=1;
else
cMask{i}(selectorCell{i})=1;
end
end
end
end
function selectorArray = getSelectorFromMasks(ccObj,covMask)
if(nargin<2)
covMask=ccObj.covMask;
end
selectorArray=cell(1,ccObj.numCov);
for i=1:ccObj.numCov
ind=find(covMask{i}==1);
if(~isempty(ind))
selectorArray{i} = ind;
else
selectorArray{i} = [];
end
end
end
function answer=isaSelectorCell(ccObj,dataSelector)
if(length(dataSelector)==ccObj.numCov && ~containsChars(dataSelector))
answer=1;
else
answer=0;
end
end
function selectorCell = generateSelectorCell(ccObj, dataSelector)
%dataSelector must be in the following format
%dataSelector{1} = {'Position','x','y'};
%dataSelector{2} = {'Force','fx','fy','fz'};
selectorCell=cell(1,ccObj.numCov);
if(isempty(dataSelector))
for i = 1:length(selectorCell);
selectorCell{i} =[]; %zeros(1,ccObj.getCov(i).dimension);
end
else
if(isa(dataSelector{1},'char'))
covName=dataSelector{1};
covLabels=cell(1,length(dataSelector)-1);
for i =1:length(covLabels)
covLabels{i}=dataSelector{i+1};
end
covIndex=ccObj.getCovIndFromName(covName);
currCov = ccObj.getCov(covIndex);
selectorCell{covIndex}=currCov.getIndicesFromLabels(covLabels);
elseif(isa(dataSelector{1},'cell'))
for i=1:length(dataSelector)
[covName, covLabels] = parseDataSelectorArray(dataSelector{i});
covIndex=ccObj.getCovIndFromName(covName);
currCov = ccObj.getCov(covIndex);
if(~isempty(currCov))
selectorCell{covIndex}=currCov.getIndicesFromLabels(covLabels);
else
error(['Covariate ' covName ' not found!']);
end
end
elseif(isa(dataSelector{1},'double'))
selectorCell=dataSelector;
else
error('dataSelector specified incorrectly!');
end
end
end
function addCovCellToColl(ccObj,cov)
[~, ncolumns]=size(cov);
for i=1:ncolumns
if(isa(cov{i},'Covariate'))
ccObj.addSingleCovToColl(cov{i});
else
error('CovColl requires a cell array of Covariate class elements');
end
end
end
function addSingleCovToColl(ccObj,cov)
if(~ccObj.isCovPresent(cov))
ccObj.covArray{ccObj.numCov+1}= cov;
ccObj.updateTimes(cov);
ccObj.covDimensions(ccObj.numCov+1) = cov.dimension;
ccObj.covMask{ccObj.numCov+1} = cov.dataMask;
ccObj.numCov = ccObj.numCov + 1;
%ccObj.sampleRate
%cov.sampleRate
if(isempty(ccObj.sampleRate)) %this is our first element
ccObj.sampleRate = cov.sampleRate;
ccObj.originalSampleRate = ccObj.sampleRate;
elseif(ccObj.sampleRate==cov.sampleRate)
%Do nothing - just add
elseif(ccObj.sampleRate>cov.sampleRate) %Upsample Covariate
cov.setSampleRate(ccObj.sampleRate);
elseif(ccObj.sampleRate<cov.sampleRate); %Upsample other covariates in collection
ccObj.setSampleRate(cov.sampleRate);
else
error('Problem setting the sample rate during adding covariate to collection');
end
else
error('Covariate not added because it is already present in this collection or another covariate has the same name');
end
end
function updateTimes(ccObj,cov)
timeVec=cov.getSigRep.getTime;
minTime=min(timeVec); maxTime=max(timeVec);
if(minTime<ccObj.minTime)
ccObj.setMinTime(minTime);
end
if(maxTime>ccObj.maxTime)
ccObj.setMaxTime(maxTime);
end
end
function ind = getCovIndFromName(ccObj,name)
ind=[];
for i=1:ccObj.numCov
if(strcmp(ccObj.getCov(i).name,name))
ind=i;
break;
end
end
end
function removeFromColl(ccObj,identifier)
covs = ccObj.getCov(identifier);
ind = zeros(1,length(covs));
if(length(ind)>1)
for i = 1:length(ind)
ind(i) = ccObj.getCovIndFromName(covs{i}.name);
end
else
ind=ccObj.getCovIndFromName(covs.name);
end
ccObj.removeFromCollByIndices(ind);
end
function removeFromCollByIndices(ccObj,ind)
remaining = ccObj.generateRemainingIndex(ind);
covArray = cell(1,length(remaining));
covMask = cell(1,length(remaining));
covDimensions = zeros(1,length(remaining));
for i=1:length(remaining)
cov = ccObj.getCov(remaining(i));
covMask{i} = ccObj.covMask{remaining(i)};
covArray{i} = cov;
covDimensions(i) = cov.dimension;
end
numCov = length(remaining);
ccObj.covArray = covArray;
ccObj.covMask = covMask;
ccObj.numCov = numCov;
ccObj.covDimensions = covDimensions;
minTime=ccObj.findMinTime;
maxTime=ccObj.findMaxTime;
ccObj.setMinTime(minTime);
ccObj.setMaxTime(maxTime);
if(numCov==0)
ccObj.sampleRate =[];
ccObj.originalSampleRate = [];
end
end
function remain = generateRemainingIndex(ccObj,ind)
remain=zeros(1,ccObj.numCov-length(ind));
count=1;
for i=1:ccObj.numCov
if(sum(i==ind)>0) %then this is one of the indices we are removing
% do nothing
else
remain(count) = i;
count=count+1;
end
end
end
end
methods (Static)
function ccObj = fromStructure(structure)
if(isa(structure,'struct'))
cov = cell(1,structure.numCov);
for i=1:structure.numCov;
cov{i} = Covariate.fromStructure(structure.covArray{i});
end
ccObj = CovColl(cov);
% covMask = structure.covMask;
% ccObj.setMask(covMask);
%% Need to fix how mask is set!!!
ccObj.setMinTime(structure.minTime);
ccObj.setMaxTime(structure.maxTime);
elseif(isa(structure,'cell'))
ccObj= cell(length(structure),1);
for i=1:length(structure)
ccObj{i} = CovColl.fromStructure(structure{i});
end
end
end
end
end
%Helper functions
function ind = covIndFromSelector(selectorCell)
ind=zeros(1,numActCov(selectorCell));
count=1;
for i=1:length(selectorCell)
if(~isempty(selectorCell{i}))
ind(count)=i;
count=count+1;
end
end
end
function n = numActCov(selectorCell)
n=0;
for i=1:length(selectorCell)
if(~isempty(selectorCell{i}))
n=n+1;
end
end
end
function dimTot = sumDimensions(selectorCell,index)
if(nargin<2)
index=length(selectorCell);
end
dimTot=0;
if(index>0 && index<=length(selectorCell))
for i=1:index
dimTot=dimTot+length(selectorCell{i});
end
end
end
function [covName, covLabels] = parseDataSelectorArray(entry)
covName = entry{1};
covLabels = cell(1,length(entry)-1);
for i =1:length(covLabels)
covLabels{i} = entry{i+1};
end
end
function answer=containsChars(x)
if(isa(x,'cell'))
for i=1:length(x)
if(isa(x{i},'char'))
answer=1;
break;
end
end
answer=0;
elseif(isa(x,'char'))
answer =1;
else
answer=0;
end
end