forked from numerique-gouv/blocknote-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPipeline-CroissantLLM.py
53 lines (37 loc) · 1.66 KB
/
Pipeline-CroissantLLM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Example: reuse your existing OpenAI setup
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteriaList
import time
model_name = "croissantllm/CroissantLLMChat-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name)
def stop(inputs_ids, scores):
is_done = inputs_ids[0, -1] == tokenizer.eos_token_id
return is_done
def response(message, history):
chat = [
{"role": "user", "content": message},
]
chat_input = tokenizer.apply_chat_template(
chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(chat_input, return_tensors="pt",
add_special_tokens=True)
print('Nombre de tokens en entrée : ', len(tokenizer.encode(chat_input)))
stopping_criteria = StoppingCriteriaList([stop])
start_time = time.time()
tokens = model.generate(**inputs, max_new_tokens=500,
do_sample=True, temperature=0.3, top_p=0.9,
pad_token_id=tokenizer.eos_token_id,
stopping_criteria=stopping_criteria)
end_time = time.time()
print('Time taken to generate response:', end_time-start_time, 'secondes')
res = tokenizer.decode(tokens[0], skip_special_tokens=True)
res_tokens = tokenizer.encode(res)
print('Nombre de tokens en sortie : ', len(res_tokens))
res_index = res.split('\n').index('<|im_start|> assistant')
cleaned_res = res.split('\n')[res_index+1:]
response_text = '\n'.join(cleaned_res)
return response_text
# print(completion.choices[0].message)
gr.ChatInterface(response).launch()