Skip to content

Latest commit

 

History

History
35 lines (21 loc) · 1.27 KB

README.md

File metadata and controls

35 lines (21 loc) · 1.27 KB

Slot Attention

This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055).

Outputs of our slot attention model. This image demonstrates the models ability to divide objects (or parts of objects) into slots.

Requirements

  • Poetry
  • Python >= 3.8
  • PyTorch >= 1.7.1
  • Pytorch Lightning >= 1.1.4
  • CUDA enabled computing device

Note: the model was run using a Nvidia Tesla V100 16GB GPU.

Getting Started

Run run.sh to get started. This script will install the dependencies, download the CLEVR dataset and run the model.

Usage

python slot_attention/train.py

Modify SlotAttentionParams in slot_attention/train.py to modify the hyperparameters. See slot_attenion/params.py for the default hyperparamters.

Logging

To log outputs to wandb, run wandb login YOUR_API_KEY and set is_logging_enabled=True in SlotAttentionParams.

Acknowledgements

Special thanks to the original authors of the paper: Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf.