-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel-train.py
120 lines (92 loc) · 4 KB
/
model-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from torch.utils.data import DataLoader, random_split
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets
from torchvision.datasets import ImageFolder
from cnn_model import CNN
from sklearn.metrics import confusion_matrix, accuracy_score, precision_recall_fscore_support
import numpy as np
import pandas as pd
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
transforms.Resize((256,256)),
])
#Initializing dataset
image_path = "dataset"
dataset = ImageFolder(root=image_path, transform=transform)
#Splitting dataset to corresponding ratio
train_set = int(0.7 *len(dataset))
validation_set = int(0.15*len(dataset))
test_set = len(dataset) - train_set - validation_set
#Set random state and split dataset
torch.manual_seed(42)
train_set, validation_set, test_set = random_split(dataset, [train_set,validation_set, test_set])
#Set data loaders
train_loader = DataLoader(train_set, batch_size=32, shuffle=False)
test_loader = DataLoader(test_set, batch_size=32, shuffle=False)
validation_loader = DataLoader(validation_set, batch_size=32, shuffle=False)
#Initalizing the custom model
model = CNN()
#Defining loss and optimizer function
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
#Initiazlie 10 epochs for training
num_epochs = 10
displayedLossTraining = 0
for epoch in range(num_epochs):
#Train the model on training set
model.train()
for i, (images, labels) in enumerate(train_loader):
#Passing model outputs and true labels to cross entropy function
outputs = model(images)
loss = criterion(outputs, labels)
#Perform backpropagation and optimized training
optimizer.zero_grad()
loss.backward()
optimizer.step()
#Show training loss
displayedLossTraining += loss.item()
#Display some metrics for training
print(f'Training: Epoch {epoch+1}/{num_epochs}, Step {i+1}/{len(train_loader)}, Loss {displayedLossTraining}')
#Initalize variable for validation
BestLossValidation = 0
totalValidation = 0
correctValidation = 0
displayedLossValidation = 0
#Evaluate model on validation set
model.eval()
with torch.no_grad():
for i, (images, labels) in enumerate(validation_loader):
outputs = model(images)
loss = criterion(outputs, labels)
totalValidation = totalValidation + labels.size(0)
_, predicted = torch.max(outputs.data, 1)
correctValidation = correctValidation + (predicted == labels).sum().item()
#Calculate metrics on validation set such as loss and accuracy
displayedLossValidation = displayedLossValidation + loss.item()
displayedAccuracy = (correctValidation/totalValidation)*100
#Save model when there is validation loss and that there is a loss in validation instead of an increase at each epoch
if (displayedLossValidation < BestLossValidation):
#Save model
BestLossValidation = displayedLossValidation
torch.save(model.state_dict(), "emotion_classifier_model_cnn_bias.pth" )
elif (BestLossValidation == 0):
#Save the first epoch as the best model initially
torch.save(model.state_dict(), "emotion_classifier_model_cnn_bias.pth" )
#Display the metrics
print(f'Validation: Epoch {epoch+1}/{num_epochs}, Step {i+1}/{len(validation_loader)}, Loss {displayedLossValidation}, Accuracy {displayedAccuracy}')
# After training and validation, during the testing phase:
model.eval()
test_predictions = []
test_true_labels = []
with torch.no_grad():
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
test_predictions.extend(predicted.numpy())
test_true_labels.extend(labels.numpy())
# Convert lists to numpy arrays for metric calculation
test_predictions = np.array(test_predictions)
test_true_labels = np.array(test_true_labels)