-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbasicclassification.py
84 lines (78 loc) · 3.11 KB
/
basicclassification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
"""Conduct basic classification independent of voting."""
import pandas as pd
from sklearn.ensemble import BaggingClassifier as BC
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier as KNC
from sklearn.neighbors.nearest_centroid import NearestCentroid as NC
from sklearn.gaussian_process import GaussianProcessClassifier as GPC
from sklearn.tree import DecisionTreeClassifier as DTC
from sklearn.tree import ExtraTreeClassifier as ExTC1
from sklearn.ensemble import ExtraTreesClassifier as ExTC2
from sklearn.neural_network import MLPClassifier as NNC
from sklearn.metrics import confusion_matrix
classifiers = {
"BC": BC,
"SVC": SVC,
"KNC": KNC,
"NC": NC,
"GPC": GPC,
"DTC": DTC,
"NNC": NNC,
"ExTC1": ExTC1,
"ExTC2": ExTC2,
}
training_costs = pd.DataFrame(columns=classifiers.keys())
prediction_costs = pd.DataFrame(columns=classifiers.keys())
rootfolder = "./results/featuresR2/"
outputfolder = "./results/classification/"
data = pd.read_csv(rootfolder + "dtlz_without_best.csv")
inputs_train = data[data.keys()[1:14]]
outputs_train = data[data.keys()[14:]]
target_train = outputs_train.idxmax(axis=1)
data_wfg = pd.read_csv(rootfolder + "wfg_without_best.csv")
inputs_test = data_wfg[data_wfg.keys()[1:14]]
outputs_test = data_wfg[data_wfg.keys()[14:]]
print(data_wfg.keys()[14:])
target_test = outputs_test.idxmax(axis=1)
total_runs = 1
for i in range(total_runs):
print('Run', i, 'of', total_runs)
temp_t = pd.DataFrame([[0, 0, 0, 0, 0, 0, 0, 0, 0]], columns=classifiers.keys())
temp_p = pd.DataFrame([[0, 0, 0, 0, 0, 0, 0, 0, 0]], columns=classifiers.keys())
for key, value in classifiers.items():
# DTLZ STUFFS
print(key, '\n')
clf = value()
clf = clf.fit(inputs_train, target_train)
predictions = clf.predict(inputs_train)
con_mat = confusion_matrix(target_train, predictions)
cost_mat = outputs_train
cost_mat = -cost_mat.sub(cost_mat.max(axis=1), axis=0)
# print(con_mat, '\n')
num_samples, num_classes = cost_mat.shape
cost = 0
lenp = len(predictions)
for index in range(num_samples):
cost += cost_mat.iloc[index][predictions[index]]
print("Cost during training", cost / lenp, '\n')
cost = cost / lenp
temp_t[key] = cost
# WFG STUFFS
predictions = clf.predict(inputs_test)
con_mat = confusion_matrix(target_test, predictions)
cost_mat = outputs_test
cost_mat = -cost_mat.sub(cost_mat.max(axis=1), axis=0)
# print(con_mat, '\n')
num_samples, num_classes = cost_mat.shape
cost = 0
lenp = len(predictions)
for index in range(num_samples):
cost += cost_mat.iloc[index][predictions[index]]
print("Cost during testing", cost / lenp, '\n')
temp_p[key] = cost / lenp
training_costs = training_costs.append(temp_t)
prediction_costs = prediction_costs.append(temp_p)
print(training_costs)
print(prediction_costs)
# training_costs.to_csv(outputfolder + "training costs.csv")
# prediction_costs.to_csv(outputfolder + "prediction costs.csv")