forked from AliaksandrSiarohin/first-order-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
138 lines (107 loc) · 5.95 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import matplotlib
matplotlib.use('Agg')
import os, sys
import yaml
from argparse import ArgumentParser
from tqdm import tqdm
import imageio
import numpy as np
from skimage.transform import resize
from skimage import img_as_ubyte
import torch
from sync_batchnorm import DataParallelWithCallback
from modules.generator import OcclusionAwareGenerator
from modules.keypoint_detector import KPDetector
from animate import normalize_kp
from scipy.spatial import ConvexHull
if sys.version_info[0] < 3:
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")
def load_checkpoints(config_path, checkpoint_path):
with open(config_path) as f:
config = yaml.load(f)
generator = OcclusionAwareGenerator(**config['model_params']['generator_params'],
**config['model_params']['common_params'])
generator.cuda()
kp_detector = KPDetector(**config['model_params']['kp_detector_params'],
**config['model_params']['common_params'])
kp_detector.cuda()
checkpoint = torch.load(checkpoint_path)
generator.load_state_dict(checkpoint['generator'])
kp_detector.load_state_dict(checkpoint['kp_detector'])
generator = DataParallelWithCallback(generator)
kp_detector = DataParallelWithCallback(kp_detector)
generator.eval()
kp_detector.eval()
return generator, kp_detector
def make_animation(source_image, driving_video, generator, kp_detector, relative=True, adapt_movement_scale=True):
with torch.no_grad():
predictions = []
source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2).cuda()
driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
kp_source = kp_detector(source)
kp_driving_initial = kp_detector(driving[:, :, 0])
for frame_idx in tqdm(range(driving.shape[2])):
driving_frame = driving[:, :, frame_idx].cuda()
kp_driving = kp_detector(driving_frame)
kp_norm = normalize_kp(kp_source=kp_source, kp_driving=kp_driving,
kp_driving_initial=kp_driving_initial, use_relative_movement=relative,
use_relative_jacobian=relative, adapt_movement_scale=adapt_movement_scale)
out = generator(source, kp_source=kp_source, kp_driving=kp_norm)
predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
return predictions
def find_best_frame(source, driving):
import face_alignment
def normalize_kp(kp):
kp = kp - kp.mean(axis=0, keepdims=True)
area = ConvexHull(kp[:, :2]).volume
area = np.sqrt(area)
kp[:, :2] = kp[:, :2] / area
return kp
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True)
kp_source = fa.get_landmarks(255 * source)[0]
kp_source = normalize_kp(kp_source)
norm = float('inf')
frame_num = 0
for i, image in tqdm(enumerate(driving)):
kp_driving = fa.get_landmarks(255 * image)[0]
kp_driving = normalize_kp(kp_driving)
new_norm = (np.abs(kp_source - kp_driving) ** 2).sum()
if new_norm < norm:
norm = new_norm
frame_num = i
return frame_num
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--config", required=True, help="path to config")
parser.add_argument("--checkpoint", default='vox-cpk.pth.tar', help="path to checkpoint to restore")
parser.add_argument("--source_image", default='sup-mat/source.png', help="path to source image")
parser.add_argument("--driving_video", default='sup-mat/source.png', help="path to driving video")
parser.add_argument("--result_video", default='result.mp4', help="path to output")
parser.add_argument("--relative", dest="relative", action="store_true", help="use relative or absolute keypoint coordinates")
parser.add_argument("--adapt_scale", dest="adapt_scale", action="store_true", help="adapt movement scale based on convex hull of keypoints")
parser.add_argument("--find_best_frame", dest="find_best_frame", action="store_true",
help="Generate from the frame that is the most alligned with source. (Only for faces, requires face_aligment lib)")
parser.add_argument("--best_frame", dest="best_frame", type=int, default=None,
help="Set frame to start from.")
parser.set_defaults(relative=False)
parser.set_defaults(adapt_scale=False)
opt = parser.parse_args()
source_image = imageio.imread(opt.source_image)
reader = imageio.get_reader(opt.driving_video)
fps = reader.get_meta_data()['fps']
reader.close()
driving_video = imageio.mimread(opt.driving_video, memtest=False)
source_image = resize(source_image, (256, 256))[..., :3]
driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
generator, kp_detector = load_checkpoints(config_path=opt.config, checkpoint_path=opt.checkpoint)
if opt.find_best_frame or opt.best_frame is not None:
i = opt.best_frame if opt.best_frame is not None else find_best_frame(source_image, driving_video)
print (i)
driving_forward = driving_video[i:]
driving_backward = driving_video[:(i+1)][::-1]
predictions_forward = make_animation(source_image, driving_forward, generator, kp_detector, relative=opt.relative, adapt_movement_scale=opt.adapt_scale)
predictions_backward = make_animation(source_image, driving_backward, generator, kp_detector, relative=opt.relative, adapt_movement_scale=opt.adapt_scale)
predictions = predictions_backward[::-1] + predictions_forward[1:]
else:
predictions = make_animation(source_image, driving_video, generator, kp_detector, relative=opt.relative, adapt_movement_scale=opt.adapt_scale)
imageio.mimsave(opt.result_video, [img_as_ubyte(frame) for frame in predictions], fps=fps)