Skip to content

Latest commit

 

History

History
164 lines (128 loc) · 6.64 KB

File metadata and controls

164 lines (128 loc) · 6.64 KB

Qwen2.5

In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen2.5 models on Intel GPUs. For illustration purposes, we utilize Qwen/Qwen2.5-3B-Instruct, Qwen/Qwen2.5-7B-Instruct and Qwen/Qwen2.5-14B-Instruct (or Qwen/Qwen2.5-3B-Instruct, Qwen/Qwen2.5-7B-Instruct and Qwen/Qwen2.5-14B-Instruct for ModelScope) as reference Qwen2.5 models.

0. Requirements

To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.

Example: Predict Tokens using generate() API

In the example generate.py, we show a basic use case for a Qwen2.5 model to predict the next N tokens using generate() API, with IPEX-LLM INT4 optimizations on Intel GPUs.

1. Install

1.1 Installation on Linux

We suggest using conda to manage environment:

conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0

1.2 Installation on Windows

We suggest using conda to manage environment:

conda create -n llm python=3.11 libuv
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0

2. Configures OneAPI environment variables for Linux

Note

Skip this step if you are running on Windows.

This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

source /opt/intel/oneapi/setvars.sh

3. Runtime Configurations

For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.

3.1 Configurations for Linux

For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1

Note: Please note that libtcmalloc.so can be installed by conda install -c conda-forge -y gperftools=2.10.

For Intel iGPU
export SYCL_CACHE_PERSISTENT=1

3.2 Configurations for Windows

For Intel iGPU and Intel Arc™ A-Series Graphics
set SYCL_CACHE_PERSISTENT=1

Note

For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.

4. Running examples

# for Hugging Face model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT

# for ModelScope model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope

Arguments info:

  • --repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the Hugging Face or ModelScope repo id for the Qwen2.5 model (e.g. Qwen/Qwen2.5-7B-Instruct) to be downloaded, or the path to the checkpoint folder. It is default to be 'Qwen/Qwen2.5-7B-Instruct'.
  • --prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be 'AI是什么?'.
  • --n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be 32.
  • --modelscope: using ModelScope as model hub instead of Hugging Face.

Sample Output

Inference time: xxxx s
-------------------- Prompt --------------------
AI是什么?
-------------------- Output --------------------
AI是Artificial Intelligence的缩写,意为“人工智能”,是指由人制造出来的系统,能够进行类似于人类智慧的行为,如学习、推理
Inference time: xxxx s
-------------------- Prompt --------------------
What is AI?
-------------------- Output --------------------
AI, or Artificial Intelligence, refers to the ability exhibited by machines to imitate human behavior and intelligence. This includes learning, problem-solving, perception, understanding language
Inference time: xxxx s
-------------------- Prompt --------------------
AI是什么?
-------------------- Output --------------------
AI是“人工智能”(Artificial Intelligence)的缩写。它是一门研究如何创建智能机器的学科,这些机器能够执行通常需要人类
Inference time: xxxx s
-------------------- Prompt --------------------
What is AI?
-------------------- Output --------------------
Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think, learn, and perform tasks that typically require human intelligence.
Inference time: xxxx s
-------------------- Prompt --------------------
AI是什么?
-------------------- Output --------------------
AI是“人工智能”的简称,是指由人结合科学原理设计,并通过工程实践创造的能够完成特定任务的软件或硬件系统。这些系统
Inference time: xxxx s
-------------------- Prompt --------------------
What is AI?
-------------------- Output --------------------
Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that would typically require human intelligence. These tasks can include things like visual perception