diff --git a/ioos_qc/timing_gap.py b/ioos_qc/timing_gap.py new file mode 100644 index 0000000..9052ccc --- /dev/null +++ b/ioos_qc/timing_gap.py @@ -0,0 +1,73 @@ +#!/usr/bin/env python +"""Timing/Gap Test based on the IOOS QARTOD manuals.""" + +import logging +import warnings +from collections import namedtuple +from numbers import Real as N +from typing import Dict, List, Optional, Sequence, Tuple, Union +from datetime import datetime, timedelta +from enum import IntEnum +import numpy as np +import pandas as pd + +try: + from numba.core.errors import NumbaTypeError +except ImportError: + NumbaTypeError = TypeError + +from ioos_qc.utils import ( + add_flag_metadata, + great_circle_distance, + isfixedlength, + isnan, + mapdates, +) + +L = logging.getLogger(__name__) + + +class QartodFlags: + """Primary flags for QARTOD.""" + + GOOD = 1 + UNKNOWN = 2 + SUSPECT = 3 + FAIL = 4 + MISSING = 9 + + +FLAGS = QartodFlags # Default name for all check modules +NOTEVAL_VALUE = QartodFlags.UNKNOWN + +def timing_gap_test(tim_stmp: float, tim_inc: float) -> np.ndarray: + """ + Timing/Gap Test checks if the data has arrived within the expected time window. + + Parameters + ---------- + tim_stmp : float + Timestamp of the most recent data. + tim_inc : float + Allowed time increment or window for data to arrive (in seconds). + + Returns + ------- + flag_arr : np.ndarray + An array with the flag, 1 for Pass, 4 for Fail. + """ + + # Get the current timestamp + now = datetime.now().timestamp() + + # Calculate the time difference between the current time and the data's timestamp + time_diff = now - tim_stmp + + # Initialize flag array with a passing value + flag_arr = np.ma.ones(1, dtype="uint8") + + # If the time difference exceeds the allowed increment, flag as Fail + if time_diff > tim_inc: + flag_arr[0] = QartodFlags.FAIL + + return flag_arr \ No newline at end of file diff --git a/tests/test_timing_gap.py b/tests/test_timing_gap.py new file mode 100644 index 0000000..cc86b26 --- /dev/null +++ b/tests/test_timing_gap.py @@ -0,0 +1,39 @@ +import logging +import unittest +import warnings + +import numpy as np +import numpy.testing as npt +import pandas as pd +import pytest +from datetime import datetime, timedelta + +from ioos_qc import timing_gap + +L = logging.getLogger("ioos_qc") +L.setLevel(logging.INFO) +L.handlers = [logging.StreamHandler()] + + +class QartodTimingTest(unittest.TestCase): + def test_timing_gap_test(self): + # Example 1: Data is within the expected time window + tim_stmp = datetime.now().timestamp() - 3000 + tim_inc = 3600 # 1 hour window + + flag_arr = timing_gap.timing_gap_test(tim_stmp, tim_inc) + self.assertEqual(flag_arr[0], timing_gap.QartodFlags.GOOD, "Timing test should pass when data is within window.") + + # Example case 2: Data is outside the expected time window + tim_stmp = datetime.now().timestamp() - 7200 + tim_inc = 3600 # 1 hour window + + flag_arr = timing_gap.timing_gap_test(tim_stmp, tim_inc) + self.assertEqual(flag_arr[0], timing_gap.QartodFlags.FAIL, "Timing test should fail when data is outside the window.") + + # Example case 3: (should fail) + tim_stmp = datetime(2023, 2, 1, 12, 0, 0).timestamp() + tim_inc = 3600 * 24 * 30 # 30-day window + + flag_arr = timing_gap.timing_gap_test(tim_stmp, tim_inc) + self.assertEqual(flag_arr[0], timing_gap.QartodFlags.FAIL, "Timing test should fail when data is beyond the 30-day window.") \ No newline at end of file