-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgreed_search.py
86 lines (66 loc) · 4.11 KB
/
greed_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import tensorflow as tf
import data
FLAGS = tf.app.flags.FLAGS
class Hypothesis:
"""Class to represent a hypothesis during beam search. Holds all the information needed for the hypothesis."""
def __init__(self, tokens, probs, state, attn_dists, switch_ref_probs, switch_gen_probs, switch_gen_pred_probs, switch_gen_copy_probs):
self.tokens = tokens
self.probs = probs
self.state = state
self.attn_dists = attn_dists
self.switch_ref_probs = switch_ref_probs
self.switch_gen_probs = switch_gen_probs
self.switch_gen_pred_probs = switch_gen_pred_probs
self.switch_gen_copy_probs = switch_gen_copy_probs
def extend(self, token, prob, state, attn_dist, switch_ref_prob, switch_gen_prob, switch_gen_pred_prob, switch_gen_copy_prob):
return Hypothesis(tokens=self.tokens + [token],
probs=self.probs + [prob],
state=state,
attn_dists=self.attn_dists + [attn_dist],
switch_ref_probs=self.switch_ref_probs + [switch_ref_prob],
switch_gen_probs=self.switch_gen_probs + [switch_gen_prob],
switch_gen_pred_probs=self.switch_gen_pred_probs + [switch_gen_pred_prob],
switch_gen_copy_probs=self.switch_gen_copy_probs + [switch_gen_copy_prob])
@property
def latest_token(self):
return self.tokens[-1]
def run_greed_search(sess, model, vocab, batch):
enc_batch, enc_states, que_states, dec_in_state = model.run_encoder(sess, batch)
hyp = Hypothesis(tokens=[vocab.word2id(data.START_DECODING)], probs=[], state=dec_in_state, attn_dists=[], switch_ref_probs=[], switch_gen_probs=[], switch_gen_pred_probs=[], switch_gen_copy_probs=[])
steps = 0
while True:
latest_token = hyp.latest_token
if isinstance(latest_token, list):
span_length = latest_token[1]-latest_token[0]+1
mask_lenth = span_length - 1
for i in range(mask_lenth):
mask_one_token = [[enc_batch[0][latest_token[0]+i]]]
state = hyp.state
(_, _, _, _, _, _, _,_,_,new_state) = model.inference_step(sess=sess, batch=batch, latest_tokens=mask_one_token, bac_states=enc_states, que_states=que_states, dec_init_states=state)
hyp = hyp.extend(token=None, prob=None, state=new_state, attn_dist="<mask>", switch_ref_prob="<mask>", switch_gen_prob="<mask>", switch_gen_pred_prob="<mask>", switch_gen_copy_prob="<mask>")
latest_token = [[enc_batch[0][latest_token[1]]]]
else:
latest_token = [[latest_token if latest_token in range(vocab.size()) else vocab.word2id(data.UNKNOWN_TOKEN)]]
state = hyp.state
# Run one step of the decoder to get the new info
(word_ids, word_probs, span_ids, span_probs, switch_ref_prob, switch_gen_prob, switch_gen_pred_prob, switch_gen_copy_prob, attn_dist, new_state) = model.inference_step(sess=sess, batch=batch, latest_tokens=latest_token, bac_states=enc_states, que_states=que_states, dec_init_states=state)
# span level
if switch_ref_prob >= switch_gen_prob:
token = span_ids
prob = span_probs
step = span_ids[1]-span_ids[0] + 1
# word level
else:
token = word_ids # int
prob = word_probs # float
step = 1
# Extend each hypothesis and collect them all in all_hyps
hyp = hyp.extend(token=token, prob=prob, state=new_state, attn_dist=attn_dist, switch_ref_prob=switch_ref_prob, switch_gen_prob=switch_gen_prob, switch_gen_pred_prob=switch_gen_pred_prob, switch_gen_copy_prob=switch_gen_copy_prob)
steps += step
# Filter and collect any hypotheses that have produced the end token.
if hyp.latest_token == vocab.word2id(data.STOP_DECODING): # if stop token is reached...
break
if steps >= FLAGS.max_dec_steps:
break
# Return the hypothesis with highest average log prob
return hyp