forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_appenddata.m
356 lines (316 loc) · 11.8 KB
/
ft_appenddata.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
function [data] = ft_appenddata(cfg, varargin)
% FT_APPENDDATA combines multiple datasets that have been preprocessed separately
% into a single large dataset.
%
% Use as
% data = ft_appenddata(cfg, data1, data2, data3, ...)
% where the configuration can be empty.
%
% If the input datasets all have the same channels, the trials will be
% concatenated. This is useful for example if you have different
% experimental conditions, which, besides analyzing them separately, for
% some reason you also want to analyze together. The function will check
% for consistency in the order of the channels. If the order is inconsistent
% the channel order of the output will be according to the channel order of
% the first data structure in the input.
%
% If the input datasets have different channels, but the same number of
% trials, the channels will be concatenated within each trial. This is
% useful for example if the data that you want to analyze contains both
% MEG and EMG channels which require different preprocessing options.
%
% Occasionally, the data needs to be concatenated in the trial dimension while
% there's a slight discrepancy in the channels in the input data (e.g. missing
% channels in one of the data structures). The function will then return a data
% structure containing only the channels which are present in all inputs.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure. The data structure in the input file should be a
% cell array for this particular function.
%
% See also FT_PREPROCESSING, FT_APPENDFREQ
% Copyright (C) 2005-2008, Robert Oostenveld
% Copyright (C) 2009-2011, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
revision = '$Id$';
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble provenance
ft_preamble trackconfig
ft_preamble debug
ft_preamble loadvar varargin
% the abort variable is set to true or false in ft_preamble_init
if abort
return
end
% check if the input data is valid for this function
for i=1:length(varargin)
varargin{i} = ft_checkdata(varargin{i}, 'datatype', {'raw+comp', 'raw'}, 'feedback', 'no');
end
% determine the dimensions of the data
Ndata = length(varargin);
if Ndata<2
error('you must give at least two datasets to append');
end
% ensure consistent input data
for i=2:Ndata
if isfield(varargin{1}, 'topo'),
assert(isequaln(varargin{1}.topo, varargin{i}.topo), 'the input has inconsistent topo fields')
end
if isfield(varargin{1}, 'topolabel'),
assert(isequaln(varargin{1}.topolabel, varargin{i}.topolabel), 'the input has inconsistent topolabel fields')
end
if isfield(varargin{1}, 'unmixing'),
assert(isequaln(varargin{1}.unmixing, varargin{i}.unmixing), 'the input has inconsistent unmixing fields')
end
end
Nchan = zeros(1,Ndata);
Ntrial = zeros(1,Ndata);
label = {};
for i=1:Ndata
Nchan(i) = length(varargin{i}.label);
Ntrial(i) = length(varargin{i}.trial);
fprintf('input dataset %d, %d channels, %d trials\n', i, Nchan(i), Ntrial(i));
label = cat(1, label(:), varargin{i}.label(:));
end
% try to locate the trial definition (trl) in the nested configuration and
% check whether the input data contains trialinfo
% this is DEPRECATED - don't look in cfg-tree for stuff anymore
% hastrialinfo = 0;
% trl = cell(1, Ndata);
% for i=1:Ndata
% if isfield(varargin{i}, 'cfg')
% trl{i} = ft_findcfg(varargin{i}.cfg, 'trl');
% else
% trl{i} = [];
% end
% if isempty(trl{i})
% % a trial definition is expected in each continuous data set
% warning('could not locate the trial definition ''trl'' in data structure %d', i);
% end
% hastrialinfo = isfield(varargin{i}, 'trialinfo') + hastrialinfo;
% end
% hastrialinfo = hastrialinfo==Ndata;
hastrialinfo = 0;
hassampleinfo = 0;
sampleinfo = cell(1, Ndata);
for i=1:Ndata
if isfield(varargin{i}, 'sampleinfo')
sampleinfo{i} = varargin{i}.sampleinfo;
else
sampleinfo{i} = [];
end
% the function should behave properly even if no sampleinfo is present,
% hence the warning seems inappropriate (ES, 24-apr-2014)
% if isempty(sampleinfo{i})
% % a sample definition is expected in each data set
% warning('no ''sampleinfo'' field in data structure %d', i);
% end
hassampleinfo = isfield(varargin{i}, 'sampleinfo') + hassampleinfo;
hastrialinfo = isfield(varargin{i}, 'trialinfo') + hastrialinfo;
end
hassampleinfo = hassampleinfo==Ndata;
hastrialinfo = hastrialinfo==Ndata;
% check the consistency of the labels across the input-structures
alllabel = unique(label, 'first');
order = zeros(length(alllabel),Ndata);
for j=1:Ndata
tmplabel = varargin{j}.label;
[ix,iy] = match_str(alllabel, tmplabel);
order(ix,j) = iy;
end
% check consistency of sensor positions across inputs
haselec = 1;
hasgrad = 1;
for j=1:Ndata
haselec = isfield(varargin{j}, 'elec') && haselec;
hasgrad = isfield(varargin{j}, 'grad') && hasgrad;
end
removesens = 0;
if haselec || hasgrad,
sens = cell(1, Ndata);
for j=1:Ndata
if haselec, sens{j} = varargin{j}.elec; end
if hasgrad, sens{j} = varargin{j}.grad; end
if j>1,
if ~isequaln(sens{j}, sens{1})
removesens = 1;
warning('sensor information does not seem to be consistent across the input arguments');
break;
end
end
end
end
% check whether the data are obtained from the same datafile in case either
% (1) we have sampleinfos and they are not identical or (2) we don't have
% sampleinfos
removesampleinfo = 0;
removetrialinfo = 0;
try
origfile1 = ft_findcfg(varargin{1}.cfg, 'datafile');
for j=2:Ndata
hassampleinfos = isfield(varargin{1}, 'sampleinfo') &&...
isfield(varargin{j}, 'sampleinfo');
if ((hassampleinfos &&...
~isequal(varargin{1}.sampleinfo, varargin{j}.sampleinfo)) ||...
~hassampleinfos) &&...
~isempty(origfile1) && ~strcmp(origfile1, ft_findcfg(varargin{j}.cfg, 'datafile'))
removesampleinfo = 1;
warning('input data comes from different datafiles; removing sampleinfo field');
break;
end
end
catch err
if strcmp(err.identifier, 'MATLAB:nonExistentField')
% this means no data.cfg is present; should not be treated as a fatal error
fprintf('cannot determine from which datafiles the data is taken\n');
else
% not sure which error, probably a bigger problem
throw(err);
end
end
catlabel = all(sum(order~=0,2)==1);
cattrial = any(sum(order~=0,2)==Ndata);
shuflabel = cattrial && ~all(all(order-repmat(order(:,1),[1 Ndata])==0));
prunelabel = cattrial && sum(sum(order~=0,2)==Ndata)<length(alllabel);
if shuflabel,
fprintf('the channel order in the input-structures is not consistent, reordering\n');
if prunelabel,
fprintf('not all input-structures contain the same channels, pruning the input prior to concatenating over trials\n');
selall = find(sum(order~=0,2)==Ndata);
alllabel = alllabel(selall);
order = order(selall,:);
end
for i=1:Ndata
varargin{i}.label = varargin{i}.label(order(:,i));
for j=1:length(varargin{i}.trial)
varargin{i}.trial{j} = varargin{i}.trial{j}(order(:,i),:);
end
end
end
if cattrial && catlabel
error('cannot determine how the data should be concatenated');
elseif cattrial
fprintf('concatenating the trials over all datasets\n');
data = [];
data.label = varargin{1}.label;
data.trial = {};
data.time = {};
if hassampleinfo, data.sampleinfo = []; end
if hastrialinfo, data.trialinfo = []; end;
for i=1:Ndata
data.trial = cat(2, data.trial, varargin{i}.trial(:)');
data.time = cat(2, data.time, varargin{i}.time(:)');
% check if all datasets to merge have the sampleinfo field
if hassampleinfo, data.sampleinfo = cat(1, data.sampleinfo, varargin{i}.sampleinfo); end
if hastrialinfo, data.trialinfo = cat(1, data.trialinfo, varargin{i}.trialinfo); end
% FIXME is not entirely robust if the different inputs have different number of columns in trialinfo
end
elseif catlabel
fprintf('concatenating the channels within each trial\n');
if ~all(diff(Ntrial)==0)
error('not all datasets have the same number of trials');
else
Ntrial = Ntrial(1);
end
data = [];
data.label = varargin{1}.label;
data.trial = varargin{1}.trial;
data.time = varargin{1}.time;
if hassampleinfo, data.sampleinfo=varargin{i}.sampleinfo; end
if hastrialinfo, data.trialinfo =varargin{i}.trialinfo; end
for i=2:Ndata
% concatenate the labels
data.label = cat(1, data.label(:), varargin{i}.label(:));
% check whether the trialinfo and sampleinfo fields are consistent
if hassampleinfo && ~isequaln(data.sampleinfo, varargin{i}.sampleinfo)
removesampleinfo = 1;
end
if hastrialinfo && ~isequaln(data.trialinfo, varargin{i}.trialinfo)
removetrialinfo = 1;
end
end
if ~isfield(data, 'fsample')
fsample = 1/mean(diff(data.time{1}));
else
fsample = data.fsample;
end
for j=1:Ntrial
%pre-allocate memory for this trial
data.trial{j} = [data.trial{j}; zeros(sum(Nchan(2:end)), size(data.trial{j},2))];
%fill this trial with data
endchan = Nchan(1);
%allow some jitter for irregular sample frequencies
tolerance = 0.01*(1/fsample);
for i=2:Ndata
if ~all(data.time{j}-varargin{i}.time{j}<tolerance)
error('there is a difference in the time axes of the input data');
end
begchan = endchan+1;
endchan = endchan+Nchan(i);
data.trial{j}(begchan:endchan,:) = varargin{i}.trial{j};
end
end
else
% labels are inconsistent, cannot determine how to concatenate the data
error('cannot determine how the data should be concatenated');
end
% some fields from the input should be copied over in the output
copyfield = {'grad', 'elec', 'topo', 'topolabel', 'unmixing', 'fsample'};
for i=1:length(copyfield)
if isfield(varargin{1}, copyfield{i})
data.(copyfield{i}) = varargin{1}.(copyfield{i});
end
end
% unshuffle the channels again to match the order of the first input data-structure
if shuflabel
fprintf('reordering the channels back to the original input order\n');
[dum,reorder] = sort(order(order(:,1)~=0,1));
for i=1:length(data.trial)
data.trial{i} = data.trial{i}(reorder,:);
end
data.label = data.label(reorder);
end
if removesens
fprintf('removing sensor information from output\n');
if haselec, data = rmfield(data, 'elec'); end
if hasgrad, data = rmfield(data, 'grad'); end
end
if removesampleinfo
fprintf('removing sampleinfo field from output\n');
if isfield(data, 'sampleinfo'), data = rmfield(data, 'sampleinfo'); end
end
if removetrialinfo
fprintf('removing trialinfo field from output\n');
if isfield(data, 'trialinfo'), data = rmfield(data, 'trialinfo'); end
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble provenance
ft_postamble previous varargin
ft_postamble history data
ft_postamble savevar data