forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_connectivityanalysis.m
896 lines (828 loc) · 36.4 KB
/
ft_connectivityanalysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
function [stat] = ft_connectivityanalysis(cfg, data)
% FT_CONNECTIVITYANALYSIS computes various measures of connectivity between
% MEG/EEG channels or between source-level signals.
%
% Use as
% stat = ft_connectivityanalysis(cfg, data)
% stat = ft_connectivityanalysis(cfg, timelock)
% stat = ft_connectivityanalysis(cfg, freq)
% stat = ft_connectivityanalysis(cfg, source)
% where the first input argument is a configuration structure (see below)
% and the second argument is the output of FT_PREPROCESSING,
% FT_TIMELOCKANLAYSIS, FT_FREQANALYSIS, FT_MVARANALYSIS or FT_SOURCEANALYSIS.
%
% The different connectivity metrics are supported only for specific
% datatypes (see below).
%
% The configuration structure has to contain
% cfg.method = string, can be
% 'amplcorr', amplitude correlation, support for freq and source data
% 'coh', coherence, support for freq, freqmvar and source data.
% For partial coherence also specify cfg.partchannel, see below.
% For imaginary part of coherency or coherency also specify
% cfg.complex, see below.
% 'csd', cross-spectral density matrix, can also calculate partial
% csds - if cfg.partchannel is specified, support for freq
% and freqmvar data
% 'dtf', directed transfer function, support for freq and
% freqmvar data
% 'granger', granger causality, support for freq and freqmvar data
% 'pdc', partial directed coherence, support for freq and
% freqmvar data
% 'plv', phase-locking value, support for freq and freqmvar data
% 'powcorr', power correlation, support for freq and source data
% 'powcorr_ortho', power correlation with single trial
% orthogonalisation, support for source data
% 'ppc' pairwise phase consistency
% 'psi', phaseslope index, support for freq and freqmvar data
% 'wpli', weighted phase lag index (signed one,
% still have to take absolute value to get indication of
% strength of interaction. Note: measure has positive
% bias. Use wpli_debiased to avoid this.
% 'wpli_debiased' debiased weighted phase lag index
% (estimates squared wpli)
% 'wppc' weighted pairwise phase consistency
% 'corr' Pearson correlation, support for timelock or raw data
%
% Additional configuration options are
% cfg.channel = Nx1 cell-array containing a list of channels which are
% used for the subsequent computations. This only has an effect when
% the input data is univariate. See FT_CHANNELSELECTION
% cfg.channelcmb = Nx2 cell-array containing the channel combinations on
% which to compute the connectivity. This only has an effect when the
% input data is univariate. See FT_CHANNELCOMBINATION
% cfg.trials = Nx1 vector specifying which trials to include for the
% computation. This only has an effect when the input data contains
% repetitions.
% cfg.feedback = string, specifying the feedback presented to the user.
% Default is 'none'. See FT_PROGRESS
%
% For specific methods the cfg can also contain
% cfg.partchannel = cell-array containing a list of channels that need to
% be partialized out, support for method 'coh', 'csd', 'plv'
% cfg.complex = 'abs' (default), 'angle', 'complex', 'imag', 'real',
% '-logabs', support for method 'coh', 'csd', 'plv'
% cfg.removemean = 'yes' (default), or 'no', support for method
% 'powcorr' and 'amplcorr'.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_PREPROCESSING, FT_TIMELOCKANALYSIS, FT_FREQANALYSIS,
% FT_MVARANALYSIS, FT_SOURCEANALYSIS, FT_NETWORKANALYSIS.
%
% For the implemented methods, see also FT_CONNECTIVITY_CORR,
% FT_CONNECTIVITY_GRANGER, FT_CONNECTIVITY_PPC, FT_CONNECTIVITY_WPLI,
% FT_CONNECTIVITY_PDC, FT_CONNECTIVITY_DTF, FT_CONNECTIVITY_PSI
% Undocumented options:
% cfg.refindx =
% cfg.jackknife =
% cfg.method = 'mi';
% cfg.granger.block =
% cfg.granger.conditional =
%
% Methods to be implemented
% 'xcorr', cross correlation function
% 'di', directionality index
% 'spearman' spearman's rank correlation
% Copyright (C) 2009, Jan-Mathijs Schoffelen, Andre Bastos, Martin Vinck, Robert Oostenveld
% Copyright (C) 2010-2011, Jan-Mathijs Schoffelen, Martin Vinck
% Copyright (C) 2012-2013, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
revision = '$Id$';
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble provenance
ft_preamble trackconfig
ft_preamble debug
ft_preamble loadvar data
% the abort variable is set to true or false in ft_preamble_init
if abort
return
end
% FIXME it should be checked carefully whether the following works
% check if the input data is valid for this function
% data = ft_checkdata(data, 'datatype', {'raw', 'timelock', 'freq', 'source'});
% set the defaults
cfg.feedback = ft_getopt(cfg, 'feedback', 'none');
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.channelcmb = ft_getopt(cfg, 'channelcmb', {'all' 'all'});
cfg.refindx = ft_getopt(cfg, 'refindx', 'all');
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.complex = ft_getopt(cfg, 'complex', 'abs');
cfg.jackknife = ft_getopt(cfg, 'jackknife', 'no');
cfg.removemean = ft_getopt(cfg, 'removemean', 'yes');
cfg.partchannel = ft_getopt(cfg, 'partchannel', '');
cfg.parameter = ft_getopt(cfg, 'parameter', []);
hasjack = (isfield(data, 'method') && strcmp(data.method, 'jackknife')) || (isfield(data, 'dimord') && strcmp(data.dimord(1:6), 'rptjck'));
hasrpt = (isfield(data, 'dimord') && ~isempty(strfind(data.dimord, 'rpt'))) || (isfield(data, 'avg') && isfield(data.avg, 'mom')); % FIXME old-fashioned pcc data
dojack = strcmp(cfg.jackknife, 'yes');
normrpt = 0; % default, has to be overruled e.g. in plv, because of single replicate normalisation
normpow = 1; % default, has to be overruled e.g. in csd,
% select trials of interest
if ~strcmp(cfg.trials, 'all')
tmpcfg = [];
tmpcfg.trials = cfg.trials;
data = ft_selectdata(tmpcfg, data);
[cfg, data] = rollback_provenance(cfg, data);
%data = ft_selectdata(data, 'rpt', cfg.trials);
end
% select channels/channelcombination of interest and set the cfg-options accordingly
if isfield(data, 'label'),
selchan = cell(0, 1);
if ~isempty(cfg.channelcmb) && ~isequal(cfg.channelcmb, {'all' 'all'}),
tmpcmb = ft_channelcombination(cfg.channelcmb, data.label);
tmpchan = unique(tmpcmb(:));
cfg.channelcmb = ft_channelcombination(cfg.channelcmb, tmpchan, 1);
selchan = [selchan;unique(cfg.channelcmb(:))];
end
cfg.channel = ft_channelselection(cfg.channel, data.label);
selchan = [selchan;cfg.channel];
if ~isempty(cfg.partchannel)
cfg.partchannel = ft_channelselection(cfg.partchannel, data.label);
selchan = [selchan; cfg.partchannel];
end
data = ft_selectdata(data, 'channel', unique(selchan));
elseif isfield(data, 'labelcmb')
cfg.channel = ft_channelselection(cfg.channel, unique(data.labelcmb(:)));
if ~isempty(cfg.partchannel)
error('partialisation is only possible without linearly indexed bivariate data');
end
if ~isempty(cfg.channelcmb),
% FIXME do something extra here
end
% FIXME call selectdata
end
% FIXME check which methods require hasrpt
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% data bookkeeping - ensure that the input data is appropriate for the method
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
needrpt = 1; % logical flag to specify whether (pseudo)-repetitions are required in the lower level connectivity function (can be singleton)
switch cfg.method
case {'coh' 'csd'}
if ~isempty(cfg.partchannel)
if hasrpt && ~hasjack,
warning('partialisation on single trial observations is not supported, removing trial dimension');
try
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}, 'cmbrepresentation', 'fullfast');
inparam = 'crsspctrm';
hasrpt = 0;
catch
error('partial coherence/csd is only supported for input allowing for a all-to-all csd representation');
end
else
try
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}, 'cmbrepresentation', 'full');
inparam = 'crsspctrm';
catch
error('partial coherence/csd is only supported for input allowing for a all-to-all csd representation');
end
end
else
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq' 'source'});
inparam = 'crsspctrm';
end
if strcmp(cfg.method, 'csd'),
normpow = 0;
outparam = 'crsspctrm';
elseif strcmp(cfg.method, 'coh'),
outparam = 'cohspctrm';
end
dtype = ft_datatype(data);
switch dtype
case 'source'
if isempty(cfg.refindx), error('indices of reference voxels need to be specified'); end
% if numel(cfg.refindx)>1, error('more than one reference voxel is not yet supported'); end
otherwise
end
% FIXME think of accommodating partial coherence for source data with only a few references
case {'wpli'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'crsspctrm';
outparam = 'wplispctrm';
debiaswpli = 0;
if hasjack, error('to compute wpli, data should be in rpt format'); end
case {'wpli_debiased'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'crsspctrm';
outparam = 'wpli_debiasedspctrm';
debiaswpli = 1;
if hasjack, error('to compute wpli, data should be in rpt format'); end
case {'ppc'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'crsspctrm';
outparam = 'ppcspctrm';
weightppc = 0;
if hasjack, error('to compute ppc, data should be in rpt format'); end
case {'wppc'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'crsspctrm';
outparam = 'wppcspctrm';
weightppc = 1;
if hasjack, error('to compute wppc, data should be in rpt format'); end
case {'plv'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq' 'source'});
inparam = 'crsspctrm';
outparam = 'plvspctrm';
normrpt = 1;
case {'corr'}
data = ft_checkdata(data, 'datatype', {'raw' 'timelock'});
if isfield(data, 'cov')
% it looks like a timelock with a cov, which is perfectly valid as input
data = ft_checkdata(data, 'datatype', 'timelock');
else
% it does not have a cov, the covariance will be computed on the fly further down
data = ft_checkdata(data, 'datatype', 'raw');
end
inparam = 'cov';
outparam = cfg.method;
case {'amplcorr' 'powcorr'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq' 'source'});
dtype = ft_datatype(data);
switch dtype
case {'freq' 'freqmvar'}
inparam = 'powcovspctrm';
case 'source'
inparam = 'powcov';
if isempty(cfg.refindx), error('indices of reference voxels need to be specified'); end
% if numel(cfg.refindx)>1, error('more than one reference voxel is not yet supported'); end
otherwise
end
outparam = [cfg.method, 'spctrm'];
case {'granger' 'instantaneous_causality' 'total_interdependence'}
% create subcfg for the spectral factorization
if ~isfield(cfg, 'granger')
cfg.granger = [];
end
cfg.granger.conditional = ft_getopt(cfg.granger, 'conditional', 'no');
cfg.granger.block = ft_getopt(cfg.granger, 'block', []);
if isfield(cfg, 'channelcmb'),
cfg.granger.channelcmb = cfg.channelcmb;
cfg = rmfield(cfg, 'channelcmb');
end
data = ft_checkdata(data, 'datatype', {'mvar' 'freqmvar' 'freq'});
inparam = {'transfer', 'noisecov', 'crsspctrm'};
if strcmp(cfg.method, 'granger'), outparam = 'grangerspctrm'; end
if strcmp(cfg.method, 'instantaneous_causality'), outparam = 'instantspctrm'; end
if strcmp(cfg.method, 'total_interdependence'), outparam = 'totispctrm'; end
case {'dtf' 'pdc'}
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'transfer';
outparam = [cfg.method, 'spctrm'];
case {'psi'}
if ~isfield(cfg, 'normalize'), cfg.normalize = 'no'; end
data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'});
inparam = 'crsspctrm';
outparam = 'psispctrm';
case {'powcorr_ortho'}
data = ft_checkdata(data, 'datatype', {'source', 'freq'});
% inparam = 'avg.mom';
inparam = 'mom';
outparam = 'powcorrspctrm';
case {'mi'}
% create the subcfg for the mutual information
if ~isfield(cfg, 'mi'), cfg.mi = []; end
cfg.mi.numbin = ft_getopt(cfg.mi, 'numbin', 10);
% what are the input requirements?
data = ft_checkdata(data, 'datatype', {'timelock' 'freq' 'source'});
dtype = ft_datatype(data);
if strcmp(dtype, 'timelock')
if ~isfield(data, 'trial')
inparam = 'avg';
else
inparam = 'trial';
end
hasrpt = (isfield(data, 'dimord') && ~isempty(strfind(data.dimord, 'rpt')));
elseif strcmp(dtype, 'freq')
inparam = 'something';
else
inparam = 'something else';
end
needrpt = true;
outparam = 'mi';
case {'di'}
% wat eigenlijk?
otherwise
error('unknown method % s', cfg.method);
end
dtype = ft_datatype(data);
% ensure that source data is in 'new' representation
if strcmp(dtype, 'source'),
data = ft_checkdata(data, 'sourcerepresentation', 'new');
end
% FIXME throw an error if cfg.complex~='abs', and dojack==1
% FIXME throw an error if no replicates and cfg.method='plv'
% FIXME trial selection has to be implemented still
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% data bookkeeping - check whether the required inparam is present in the data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if any(~isfield(data, inparam)) || (isfield(data, 'crsspctrm') && (ischar(inparam) && strcmp(inparam, 'crsspctrm'))),
if iscell(inparam)
% in the case of multiple inparams, use the first one to check the
% input data (e.g. checking for 'transfer' for requested granger)
inparam = inparam{1};
end
switch dtype
case {'freq' 'freqmvar'}
if strcmp(inparam, 'crsspctrm')
if isfield(data, 'fourierspctrm')
[data, powindx, hasrpt] = univariate2bivariate(data, 'fourierspctrm', 'crsspctrm', dtype, 'cmb', cfg.channelcmb, 'keeprpt', normrpt);
elseif strcmp(inparam, 'crsspctrm') && isfield(data, 'powspctrm')
% if input data is old-fashioned, i.e. contains powandcsd
[data, powindx, hasrpt] = univariate2bivariate(data, 'powandcsd', 'crsspctrm', dtype, 'cmb', cfg.channelcmb, 'keeprpt', normrpt);
elseif isfield(data, 'labelcmb')
powindx = labelcmb2indx(data.labelcmb);
else
powindx = [];
end
elseif strcmp(inparam, 'powcovspctrm')
if isfield(data, 'powspctrm'),
[data, powindx] = univariate2bivariate(data, 'powspctrm', 'powcovspctrm', dtype, 'demeanflag', strcmp(cfg.removemean, 'yes'), 'cmb', cfg.channelcmb, 'sqrtflag', strcmp(cfg.method, 'amplcorr'));
elseif isfield(data, 'fourierspctrm'),
[data, powindx] = univariate2bivariate(data, 'fourierspctrm', 'powcovspctrm', dtype, 'demeanflag', strcmp(cfg.removemean, 'yes'), 'cmb', cfg.channelcmb, 'sqrtflag', strcmp(cfg.method, 'amplcorr'));
end
elseif strcmp(inparam, 'transfer')
if isfield(data, 'fourierspctrm')
% FIXME this is fast but throws away the trial dimension, consider
% a way to keep trial information if needed, but use the fast way
% if possible
data = ft_checkdata(data, 'cmbrepresentation', 'fullfast');
hasrpt = 0;
elseif isfield(data, 'powspctrm')
data = ft_checkdata(data, 'cmbrepresentation', 'full');
end
tmpcfg = ft_checkconfig(cfg, 'createsubcfg', {'granger'});
optarg = ft_cfg2keyval(tmpcfg.granger);
data = ft_connectivity_csd2transfer(data, optarg{:});
% convert the inparam back to cell array in the case of granger
if strcmp(cfg.method, 'granger') || strcmp(cfg.method, 'instantaneous_causality') || strcmp(cfg.method, 'total_interdependence')
inparam = {'transfer' 'noisecov' 'crsspctrm'};
end
end
case 'source'
if ischar(cfg.refindx) && strcmp(cfg.refindx, 'all')
cfg.refindx = 1:size(data.pos,1);
elseif ischar(cfg.refindx)
error('cfg.refindx should be a 1xN vector, or ''all''');
end
if strcmp(inparam, 'crsspctrm')
[data, powindx, hasrpt] = univariate2bivariate(data, 'mom', 'crsspctrm', dtype, 'cmb', cfg.refindx, 'keeprpt', 0);
% [data, powindx, hasrpt] = univariate2bivariate(data, 'fourierspctrm', 'crsspctrm', dtype, 0, cfg.refindx, [], 1);
elseif strcmp(inparam, 'powcov')
data = ft_checkdata(data, 'sourcerepresentation', 'new', 'haspow', 'yes');
[data, powindx, hasrpt] = univariate2bivariate(data, 'pow', 'powcov', dtype, 'demeanflag', strcmp(cfg.removemean, 'yes'), 'cmb', cfg.refindx, 'sqrtflag', strcmp(cfg.method, 'amplcorr'), 'keeprpt', 0);
end
case 'comp'
[data, powindx, hasrpt] = univariate2bivariate(data, 'trial', 'cov', dtype, 'demeanflag', strcmp(cfg.removemean, 'yes'), 'cmb', cfg.channelcmb, 'sqrtflag', false, 'keeprpt', 1);
end % switch dtype
elseif (isfield(data, 'crsspctrm') && (ischar(inparam) && strcmp(inparam, 'crsspctrm')))
% this means that there is a sparse crsspctrm in the data
else
powindx = [];
end % ensure that the bivariate measure exists
% do some additional work if single trial normalisation is required
% for example when plv needs to be computed
if normrpt && hasrpt,
if strcmp(inparam, 'crsspctrm'),
tmp = data.(inparam);
nrpt = size(tmp, 1);
ft_progress('init', cfg.feedback, 'normalising...');
for k = 1:nrpt
ft_progress(k/nrpt, 'normalising amplitude of replicate % d from % d to 1\n', k, nrpt);
tmp(k, :, :, :, :) = tmp(k, :, :, :, :)./abs(tmp(k, :, :, :, :));
end
ft_progress('close');
data.(inparam) = tmp;
end
end
% convert the labels for the partialisation channels into indices
% do the same for the labels of the channels that should be kept
% convert the labels in the output to reflect the partialisation
if ~isempty(cfg.partchannel)
allchannel = ft_channelselection(cfg.channel, data.label);
pchanindx = match_str(allchannel, cfg.partchannel);
kchanindx = setdiff(1:numel(allchannel), pchanindx);
keepchn = allchannel(kchanindx);
cfg.pchanindx = pchanindx;
cfg.allchanindx = kchanindx;
partstr = '';
for k = 1:numel(cfg.partchannel)
partstr = [partstr, '-', cfg.partchannel{k}];
end
for k = 1:numel(keepchn)
keepchn{k} = [keepchn{k}, '\', partstr(2:end)];
end
data.label = keepchn; % update labels to remove the partialed channels
% FIXME consider keeping track of which channels have been partialised
else
cfg.pchanindx = [];
cfg.allchanindx = [];
end
% check if jackknife is required
if hasrpt && dojack && hasjack,
% do nothing
elseif hasrpt && dojack && ~(exist('debiaswpli', 'var') || exist('weightppc', 'var')),
% compute leave-one-outs
data = ft_selectdata(data, 'jackknife', 'yes');
hasjack = 1;
elseif hasrpt && ~(exist('debiaswpli', 'var') || exist('weightppc', 'var') || strcmp(cfg.method, 'powcorr_ortho'))% || needrpt)
% create dof variable
if isfield(data, 'dof')
dof = data.dof;
elseif isfield(data, 'cumtapcnt')
dof = sum(data.cumtapcnt);
end
data = ft_selectdata(data, 'avgoverrpt', 'yes');
hasrpt = 0;
else
% nothing required
end
% ensure that the first dimension is singleton if ~hasrpt
if ~hasrpt && needrpt
if ischar(inparam)
data.(inparam) = reshape(data.(inparam), [1 size(data.(inparam))]);
else
for k = 1:numel(inparam)
data.(inparam{k}) = reshape(data.(inparam{k}), [1 size(data.(inparam{k}))]);
end
end
if isfield(data, 'dimord')
data.dimord = ['rpt_', data.dimord];
else
data.([inparam, 'dimord']) = ['rpt_', data.([inparam, 'dimord'])];
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute the desired connectivity metric by calling the appropriate ft_connectivity_XXX function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch cfg.method
case 'coh'
% coherence (unsquared), if cfg.complex = 'imag' imaginary part of coherency
optarg = {'complex', cfg.complex, 'dimord', data.dimord, 'feedback', cfg.feedback, 'pownorm', normpow, 'hasjack', hasjack};
if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx, 'allchanindx', cfg.allchanindx}); end
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
case 'csd'
% cross-spectral density (e.g. useful if partialisation is required)
optarg = {'complex', cfg.complex, 'dimord', data.dimord, 'feedback', cfg.feedback, 'pownorm', normpow, 'hasjack', hasjack};
if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx, 'allchanindx', cfg.allchanindx}); end
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
case {'wpli' 'wpli_debiased'}
% weighted pli or debiased weighted phase lag index.
optarg = {'feedback', cfg.feedback, 'dojack', dojack, 'debias', debiaswpli};
[datout, varout, nrpt] = ft_connectivity_wpli(data.(inparam), optarg{:});
case {'wppc' 'ppc'}
% weighted pairwise phase consistency or pairwise phase consistency
optarg = {'feedback', cfg.feedback, 'dojack', dojack, 'weighted', weightppc};
[datout, varout, nrpt] = ft_connectivity_ppc(data.(inparam), optarg{:});
case 'plv'
% phase locking value
optarg = {'complex', cfg.complex, 'dimord', data.dimord, 'feedback', cfg.feedback, 'pownorm', normpow, 'hasjack', hasjack};
if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx, 'allchanindx', cfg.allchanindx}); end
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
case 'amplcorr'
% amplitude correlation
if isfield(data, 'dimord'),
dimord = data.dimord;
else
dimord = data.([inparam, 'dimord']);
end
optarg = {'feedback', cfg.feedback, 'dimord', dimord, 'complex', 'real', 'pownorm', 1, 'pchanindx', [], 'hasjack', hasjack};
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
case 'powcorr'
% power correlation
if isfield(data, 'dimord'),
dimord = data.dimord;
else
dimord = data.([inparam, 'dimord']);
end
optarg = {'feedback', cfg.feedback, 'dimord', dimord, 'complex', 'real', 'pownorm', 1, 'pchanindx', [], 'hasjack', hasjack};
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
case {'granger' 'instantaneous_causality' 'total_interdependence'}
% granger causality
if ft_datatype(data, 'freq') || ft_datatype(data, 'freqmvar'),
if isfield(data, 'labelcmb') && ~istrue(cfg.granger.conditional),
% multiple pairwise non-parametric transfer functions
% linearly indexed
% The following is very slow, one may make assumptions regarding
% the order of the channels -> csd2transfer gives combinations in
% quadruplets, where the first and fourth are auto-combinations,
% and the second and third are cross-combinations
% powindx = labelcmb2indx(data.labelcmb);
%
% The following is not needed anymore, because ft_connectivity_granger
% relies on some hard-coded assumptions for the channel-pair ordering.
% Otherwise it becomes just too slow.
% powindx = zeros(size(data.labelcmb));
% for k = 1:size(powindx, 1)/4
% ix = ((k-1)*4+1):k*4;
% powindx(ix, :) = [1 1;4 1;1 4;4 4] + (k-1)*4;
% end
powindx = [];
if isfield(data, 'label'),
% this field should be removed
data = rmfield(data, 'label');
end
elseif isfield(data, 'labelcmb') && istrue(cfg.granger.conditional),
% conditional (blockwise) needs linearly represented cross-spectra,
% that have been produced by ft_connectivity_csd2transfer
%
% each row in Nx2 cell-array tmp refers to a comparison
% tmp{k, 1} represents the ordered blocks
% for the full trivariate model: the second element drives the
% first element, while the rest is partialed out.
% tmp{k, 2} represents the ordered blocks where the driving block
% is left out
blocks = unique(data.blockindx);
nblocks = numel(blocks);
cnt = 0;
for k = 1:nblocks
for m = (k+1):nblocks
cnt = cnt+1;
rest = setdiff(reshape(blocks,[1 numel(blocks)]), [k m]); % make sure to reshape blocks into 1xn vector
tmp{cnt, 1} = [k m rest];
tmp{cnt, 2} = [k rest];
newlabelcmb{cnt, 1} = data.block(m).name; % note the index swap: convention is driver in left column
newlabelcmb{cnt, 2} = data.block(k).name;
cnt = cnt+1;
tmp{cnt, 1} = [m k rest];
tmp{cnt, 2} = [m rest];
newlabelcmb{cnt, 1} = data.block(k).name;
newlabelcmb{cnt, 2} = data.block(m).name;
end
end
[cmbindx, n] = blockindx2cmbindx(data.labelcmb, {data.label data.blockindx}, tmp);
powindx.cmbindx = cmbindx;
powindx.n = n;
data.labelcmb = newlabelcmb;
if isfield(data, 'label')
% this field should be removed
data = rmfield(data, 'label');
end
elseif isfield(cfg.granger, 'block') && ~isempty(cfg.granger.block)
% blockwise granger
for k = 1:numel(cfg.granger.block)
%newlabel{k, 1} = cat(2, cfg.granger.block(k).label{:});
newlabel{k,1} = cfg.granger.block(k).name;
powindx{k,1} = match_str(data.label, cfg.granger.block(k).label);
end
data.label = newlabel;
else
powindx = [];
end
% fs = cfg.fsample; % FIXME do we really need this, or is this related to how noisecov is defined and normalised?
if ~exist('powindx', 'var'), powindx = []; end
if strcmp(cfg.method, 'granger'), methodstr = 'granger'; end
if strcmp(cfg.method, 'instantaneous_causality'), methodstr = 'instantaneous'; end
if strcmp(cfg.method, 'total_interdependence'), methodstr = 'total'; end
optarg = {'hasjack', hasjack, 'method', methodstr, 'powindx', powindx, 'dimord', data.dimord};
[datout, varout, nrpt] = ft_connectivity_granger(data.transfer, data.noisecov, data.crsspctrm, optarg{:});
else
error('granger for time domain data is not yet implemented');
end
case 'dtf'
% directed transfer function
if isfield(data, 'labelcmb'),
powindx = labelcmb2indx(data.labelcmb);
else
powindx = [];
end
optarg = {'feedback', cfg.feedback, 'powindx', powindx, 'hasjack', hasjack};
hasrpt = ~isempty(strfind(data.dimord, 'rpt'));
if hasrpt,
nrpt = size(data.(inparam), 1);
datin = data.(inparam);
else
nrpt = 1;
datin = reshape(data.(inparam), [1 size(data.(inparam))]);
end
[datout, varout, nrpt] = ft_connectivity_dtf(datin, optarg{:});
case 'pdc'
% partial directed coherence
if isfield(data, 'labelcmb'),
powindx = labelcmb2indx(data.labelcmb);
else
powindx = [];
end
optarg = {'feedback', cfg.feedback, 'powindx', powindx, 'hasjack', hasjack};
hasrpt = ~isempty(strfind(data.dimord, 'rpt'));
if hasrpt,
nrpt = size(data.(inparam), 1);
datin = data.(inparam);
else
nrpt = 1;
datin = reshape(data.(inparam), [1 size(data.(inparam))]);
end
[datout, varout, nrpt] = ft_connectivity_pdc(datin, optarg{:});
case 'psi'
% phase slope index
nbin = nearest(data.freq, data.freq(1)+cfg.bandwidth)-1;
optarg = {'feedback', cfg.feedback, 'dimord', data.dimord, 'nbin', nbin, 'normalize', cfg.normalize, 'hasrpt', hasrpt, 'hasjack', hasjack};
if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end
[datout, varout, nrpt] = ft_connectivity_psi(data.(inparam), optarg{:});
case 'powcorr_ortho'
% Joerg Hipp's power correlation method
optarg = {'refindx', cfg.refindx, 'tapvec', data.cumtapcnt};
if isfield(data, 'mom')
% this is expected to be a single frequency
dat = cat(2, data.mom{data.inside}).';
datout = ft_connectivity_powcorr_ortho(dat, optarg{:});
elseif strcmp(data.dimord, 'rpttap_chan_freq')
% loop over all frequencies
[nrpttap, nchan, nfreq] = size(data.fourierspctrm);
datout = cell(1, nfreq);
for i=1:length(data.freq)
dat = reshape(data.fourierspctrm(:,:,i)', nrpttap, nchan).';
datout{i} = ft_connectivity_powcorr_ortho(dat, optarg{:});
end
datout = cat(3, datout{:});
% HACK otherwise I don't know how to inform the code further down about the dimord
data.dimord = 'rpttap_chan_chan_freq';
else
error('unsupported data representation');
end
varout = [];
nrpt = numel(data.cumtapcnt);
case 'mi'
% mutual information using the information breakdown toolbox
% presence of the toolbox is checked in the low-level function
if strcmp(dtype, 'timelock')
dat = data.(inparam);
dat = reshape(permute(dat, [2 3 1]), [size(dat, 2) size(dat, 1)*size(dat, 3)]);
data = rmfield(data, 'time');
data.dimord = 'chan_chan';
elseif strcmp(dtype, 'freq')
error('not yet implemented');
elseif strcmp(dtype, 'source')
% for the time being work with mom
% dat = cat(2, data.mom{data.inside}).';
dat = cat(1, data.mom{data.inside});
% dat = abs(dat);
end
optarg = {'numbin', cfg.mi.numbin, 'refindx', cfg.refindx};
[datout] = ft_connectivity_mutualinformation(dat, optarg{:});
varout = [];
nrpt = [];
case 'corr'
% pearson's correlation coefficient
optarg = {'dimord', getdimord(data, inparam), 'feedback', cfg.feedback, 'hasjack', hasjack};
if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx, 'allchanindx', cfg.allchanindx}); end
[datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:});
case 'xcorr'
% cross-correlation function
error('method %s is not yet implemented', cfg.method);
case 'spearman'
% spearman's rank correlation
error('method %s is not yet implemented', cfg.method);
case 'di'
% directionality index
error('method %s is not yet implemented', cfg.method);
otherwise
error('unknown method %s', cfg.method);
end % switch method
% remove the auto combinations if necessary -> FIXME this is granger specific and thus could move to ft_connectivity_granger
if (strcmp(cfg.method, 'granger') || strcmp(cfg.method, 'instantaneous_causality') || strcmp(cfg.method, 'total_interdependence')) && isfield(cfg, 'granger') && isfield(cfg.granger, 'sfmethod') && strcmp(cfg.granger.sfmethod, 'bivariate'),
% remove the auto-combinations based on the order in the data
switch dtype
case {'freq' 'freqmvar'}
keepchn = 1:size(datout, 1);
keepchn = mod(keepchn, 4)==2 | mod(keepchn, 4)==3;
datout = datout(keepchn, :, :, :, :);
if ~isempty(varout),
varout = varout(keepchn, :, :, :, :);
end
data.labelcmb = data.labelcmb(keepchn, :);
case 'source'
% not yet implemented
end
end
if exist('powindx', 'var') && ~isempty(powindx),
% based on powindx
switch dtype
case {'freq' 'freqmvar'}
if isfield(data, 'labelcmb') && ~isstruct(powindx),
keepchn = powindx(:, 1) ~= powindx(:, 2);
datout = datout(keepchn, :, :, :, :);
if ~isempty(varout),
if all(size(varout)==size(nrpt))
nrpt = nrpt(keepchn, :, :, :, :);
end
varout = varout(keepchn, :, :, :, :);
end
data.labelcmb = data.labelcmb(keepchn, :);
end
case 'source'
nvox = size(unique(data.pos(:, 1:3), 'rows'), 1);
ncmb = size(data.pos, 1)/nvox-1;
remove = (powindx(:, 1) == powindx(:, 2)) & ((1:size(powindx, 1))' > nvox*ncmb);
keepchn = ~remove;
datout = datout(keepchn, :, :, :, :);
if ~isempty(varout),
varout = varout(keepchn, :, :, :, :);
end
inside = false(zeros(1, size(data.pos, 1)));
inside(data.inside) = true;
inside = inside(keepchn);
data.inside = find(inside)';
data.outside = find(inside==0)';
data.pos = data.pos(keepchn, :);
end % switch dtype
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% create the output structure
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch dtype
case {'freq' 'freqmvar'},
stat = [];
if isfield(data, 'label'),
stat.label = data.label;
end
if isfield(data, 'labelcmb'),
stat.labelcmb = data.labelcmb;
end
tok = tokenize(data.dimord, '_');
dimord = '';
for k = 1:numel(tok)
if isempty(strfind(tok{k}, 'rpt'))
dimord = [dimord, '_', tok{k}];
end
end
stat.dimord = dimord(2:end);
stat.(outparam) = datout;
if ~isempty(varout),
stat.([outparam, 'sem']) = (varout./nrpt).^0.5;
end
case 'timelock'
stat = [];
if isfield(data, 'label'),
stat.label = data.label;
end
if isfield(data, 'labelcmb'),
stat.labelcmb = data.labelcmb;
end
tok = tokenize(getdimord(data, inparam), '_');
dimord = '';
for k = 1:numel(tok)
if isempty(strfind(tok{k}, 'rpt'))
dimord = [dimord, '_', tok{k}];
end
end
stat.dimord = dimord(2:end);
stat.(outparam) = datout;
if ~isempty(varout),
stat.([outparam, 'sem']) = (varout./nrpt).^0.5;
end
case 'source'
stat = keepfields(data, {'pos', 'dim', 'transform', 'inside', 'outside'});
stat.(outparam) = datout;
if ~isempty(varout),
stat.([outparam, 'sem']) = (varout/nrpt).^0.5;
end
end % switch dtype
if isfield(stat, 'dimord')
dimtok = tokenize(stat.dimord, '_');
% these dimensions in the output data must come from the input data
if any(strcmp(dimtok, 'time')), stat.time = data.time; end
if any(strcmp(dimtok, 'freq')), stat.freq = data.freq; end
else
% just copy them over, alhtough we don't know for sure whether they are needed in the output
if isfield(data, 'freq'), stat.freq = data.freq; end
if isfield(data, 'time'), stat.time = data.time; end
end
if isfield(data, 'grad'), stat.grad = data.grad; end
if isfield(data, 'elec'), stat.elec = data.elec; end
if exist('dof', 'var'), stat.dof = dof; end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble provenance
ft_postamble previous data
ft_postamble history stat
ft_postamble savevar stat