forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_defacevolume.m
329 lines (278 loc) · 12.7 KB
/
ft_defacevolume.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
function mri = ft_defacevolume(cfg, mri)
% FT_DEFACEVOLUME allows you to blank out specific regions from an anatomical MRI,
% such as the face and ears. The graphical user interface allows you to position a
% box over the anatomical MRI inside which all anatomical voxel values will be
% replaced by zero. Depending on the alignment of the anatomical MRI and whether both
% face and ears need to be removed, you might have to call this function multiple
% times in succession. Following defacing, you should check the result with
% FT_SOURCEPLOT.
%
% Use as
% mri = ft_defacevolume(cfg, mri)
%
% The configuration can contain the following options
% cfg.translate = initial position of the center of the box (default = [0 0 0])
% cfg.scale = initial size of the box along each dimension (default is automatic)
% cfg.translate = initial rotation of the box (default = [0 0 0])
% cfg.selection = which voxels to keep, can be 'inside' or 'outside' (default = 'outside')
%
% See also FT_ANONIMIZEDATA, FT_ANALYSISPIPELINE, FT_SOURCEPLOT
% Copyright (C) 2015, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
revision = '$Id$';
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble loadvar mri
ft_preamble provenance mri
ft_preamble trackconfig
ft_preamble debug
% the abort variable is set to true or false in ft_preamble_init
if abort
return
end
% set the defaults
cfg.rotate = ft_getopt(cfg, 'rotate', [0 0 0]);
cfg.scale = ft_getopt(cfg, 'scale'); % the automatic default is determined further down
cfg.translate = ft_getopt(cfg, 'translate', [0 0 0]);
cfg.selection = ft_getopt(cfg, 'selection', 'outside');
% check if the input data is valid for this function
mri = ft_checkdata(mri, 'datatype', 'volume', 'feedback', 'yes');
% determine the size of the "unit" sphere in the origin and the length of the axes
switch mri.unit
case 'mm'
axmax = 150;
rbol = 5;
case 'cm'
axmax = 15;
rbol = 0.5;
case 'm'
axmax = 0.15;
rbol = 0.005;
otherwise
error('unknown units (%s)', unit);
end
% the volumetric data needs to be interpolated onto three orthogonal planes
% determine a resolution that is close to, or identical to the original resolution
[corner_vox, corner_head] = cornerpoints(mri.dim, mri.transform);
diagonal_head = norm(range(corner_head));
diagonal_vox = norm(range(corner_vox));
resolution = diagonal_head/diagonal_vox; % this is in units of "mri.unit"
figHandle = figure;
set(figHandle, 'CloseRequestFcn', @cb_close);
% clear persistent variables to ensure fresh figure
clear ft_plot_slice
% create a contrast enhanced version of the anatomy
mri.anatomy = double(mri.anatomy);
dum = unique(mri.anatomy(:));
clim(1) = dum(round(0.05*numel(dum)));
clim(2) = dum(round(0.95*numel(dum)));
anatomy = (mri.anatomy-clim(1))/(clim(2)-clim(1));
ft_plot_ortho(anatomy, 'transform', mri.transform, 'resolution', resolution, 'style', 'intersect');
axis vis3d
view([110 36]);
% shift the axes to the left
ax = get(gca, 'position');
ax(1) = 0;
set(gca, 'position', ax);
% get the xyz-axes
xdat = [-axmax 0 0; axmax 0 0];
ydat = [0 -axmax 0; 0 axmax 0];
zdat = [0 0 -axmax; 0 0 axmax];
% get the xyz-axes dotted
xdatdot = (-axmax:(axmax/15):axmax);
xdatdot = xdatdot(1:floor(numel(xdatdot)/2)*2);
xdatdot = reshape(xdatdot, [2 numel(xdatdot)/2]);
n = size(xdatdot,2);
ydatdot = [zeros(2,n) xdatdot zeros(2,n)];
zdatdot = [zeros(2,2*n) xdatdot];
xdatdot = [xdatdot zeros(2,2*n)];
% plot axes
hl = line(xdat, ydat, zdat);
set(hl(1), 'linewidth', 1, 'color', 'r');
set(hl(2), 'linewidth', 1, 'color', 'g');
set(hl(3), 'linewidth', 1, 'color', 'b');
hld = line(xdatdot, ydatdot, zdatdot);
for k = 1:n
set(hld(k ), 'linewidth', 3, 'color', 'r');
set(hld(k+n*1), 'linewidth', 3, 'color', 'g');
set(hld(k+n*2), 'linewidth', 3, 'color', 'b');
end
if isempty(cfg.scale)
cfg.scale = [axmax axmax axmax]/2;
end
guidata(figHandle, cfg);
% add the GUI elements
cb_creategui(gca);
cb_redraw(gca);
uiwait(figHandle);
cfg = guidata(figHandle);
delete(figHandle);
drawnow
fprintf('keeping all voxels from MRI that are %s the box\n', cfg.selection)
R = cfg.R;
S = cfg.S;
T = cfg.T;
% it is possible to convert the box to headcoordinates, but it is more efficient the other way around
[X, Y, Z] = ndgrid(1:mri.dim(1), 1:mri.dim(2), 1:mri.dim(3));
voxpos = ft_warp_apply(mri.transform, [X(:) Y(:) Z(:)]); % voxel positions in head coordinates
voxpos = ft_warp_apply(inv(T*S*R), voxpos); % voxel positions in box coordinates
keep = ...
voxpos(:,1) > -0.5 & ...
voxpos(:,1) < +0.5 & ...
voxpos(:,2) > -0.5 & ...
voxpos(:,2) < +0.5 & ...
voxpos(:,3) > -0.5 & ...
voxpos(:,3) < +0.5;
if strcmp(cfg.selection, 'inside')
% invert the selection, i.e. keep the voxels inside the box
keep = ~keep;
end
mri.anatomy(keep) = 0;
fprintf('erasing %.0f%% of the voxels\n', 100*mean(keep));
% remove the temporary fields from the configuration, keep the rest for provenance
cfg = removefields(cfg, {'R', 'S', 'T'});
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble provenance
ft_postamble history mri
ft_postamble savevar mri
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_redraw(figHandle, varargin)
persistent p
% define the position of each GUI element
figHandle = get(figHandle, 'parent');
cfg = guidata(figHandle);
rx = str2double(get(findobj(figHandle, 'tag', 'rx'), 'string'));
ry = str2double(get(findobj(figHandle, 'tag', 'ry'), 'string'));
rz = str2double(get(findobj(figHandle, 'tag', 'rz'), 'string'));
tx = str2double(get(findobj(figHandle, 'tag', 'tx'), 'string'));
ty = str2double(get(findobj(figHandle, 'tag', 'ty'), 'string'));
tz = str2double(get(findobj(figHandle, 'tag', 'tz'), 'string'));
sx = str2double(get(findobj(figHandle, 'tag', 'sx'), 'string'));
sy = str2double(get(findobj(figHandle, 'tag', 'sy'), 'string'));
sz = str2double(get(findobj(figHandle, 'tag', 'sz'), 'string'));
% remember the user specified transformation
cfg.rotate = [rx ry rz];
cfg.translate = [tx ty tz];
cfg.scale = [sx sy sz];
R = rotate (cfg.rotate);
T = translate(cfg.translate);
S = scale (cfg.scale);
% remember the transformation matrices
cfg.R = R;
cfg.T = T;
cfg.S = S;
% start with a cube of unit dimensions
x1 = -0.5;
y1 = -0.5;
z1 = -0.5;
x2 = +0.5;
y2 = +0.5;
z2 = +0.5;
plane1 = [
x1 y1 z1
x2 y1 z1
x2 y2 z1
x1 y2 z1];
plane2 = [
x1 y1 z2
x2 y1 z2
x2 y2 z2
x1 y2 z2];
plane3 = [
x1 y1 z1
x1 y2 z1
x1 y2 z2
x1 y1 z2];
plane4 = [
x2 y1 z1
x2 y2 z1
x2 y2 z2
x2 y1 z2];
plane5 = [
x1 y1 z1
x2 y1 z1
x2 y1 z2
x1 y1 z2];
plane6 = [
x1 y2 z1
x2 y2 z1
x2 y2 z2
x1 y2 z2];
plane1 = ft_warp_apply(T*R*S, plane1);
plane2 = ft_warp_apply(T*R*S, plane2);
plane3 = ft_warp_apply(T*R*S, plane3);
plane4 = ft_warp_apply(T*R*S, plane4);
plane5 = ft_warp_apply(T*R*S, plane5);
plane6 = ft_warp_apply(T*R*S, plane6);
if all(ishandle(p))
delete(p);
end
p(1) = patch(plane1(:,1), plane1(:,2), plane1(:,3), 'y');
p(2) = patch(plane2(:,1), plane2(:,2), plane2(:,3), 'y');
p(3) = patch(plane3(:,1), plane3(:,2), plane3(:,3), 'y');
p(4) = patch(plane4(:,1), plane4(:,2), plane4(:,3), 'y');
p(5) = patch(plane5(:,1), plane5(:,2), plane5(:,3), 'y');
p(6) = patch(plane6(:,1), plane6(:,2), plane6(:,3), 'y');
set(p, 'FaceAlpha', 0.3);
guidata(figHandle, cfg);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_creategui(figHandle, varargin)
% define the position of each GUI element
figHandle = get(figHandle, 'parent');
cfg = guidata(figHandle);
% constants
CONTROL_WIDTH = 0.05;
CONTROL_HEIGHT = 0.08;
CONTROL_HOFFSET = 0.68;
CONTROL_VOFFSET = 0.20;
% rotateui
uicontrol('tag', 'rotateui', 'parent', figHandle, 'units', 'normalized', 'style', 'text', 'string', 'rotate', 'callback', [])
uicontrol('tag', 'rx', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.rotate(1)), 'callback', @cb_redraw)
uicontrol('tag', 'ry', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.rotate(2)), 'callback', @cb_redraw)
uicontrol('tag', 'rz', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.rotate(3)), 'callback', @cb_redraw)
ft_uilayout(figHandle, 'tag', 'rotateui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET);
ft_uilayout(figHandle, 'tag', 'rx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET);
ft_uilayout(figHandle, 'tag', 'ry', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET);
ft_uilayout(figHandle, 'tag', 'rz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET);
% scaleui
uicontrol('tag', 'scaleui', 'parent', figHandle, 'units', 'normalized', 'style', 'text', 'string', 'scale', 'callback', [])
uicontrol('tag', 'sx', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.scale(1)), 'callback', @cb_redraw)
uicontrol('tag', 'sy', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.scale(2)), 'callback', @cb_redraw)
uicontrol('tag', 'sz', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.scale(3)), 'callback', @cb_redraw)
ft_uilayout(figHandle, 'tag', 'scaleui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
ft_uilayout(figHandle, 'tag', 'sx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
ft_uilayout(figHandle, 'tag', 'sy', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
ft_uilayout(figHandle, 'tag', 'sz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-CONTROL_HEIGHT);
% translateui
uicontrol('tag', 'translateui', 'parent', figHandle, 'units', 'normalized', 'style', 'text', 'string', 'translate', 'callback', [])
uicontrol('tag', 'tx', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.translate(1)), 'callback', @cb_redraw)
uicontrol('tag', 'ty', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.translate(2)), 'callback', @cb_redraw)
uicontrol('tag', 'tz', 'parent', figHandle, 'units', 'normalized', 'style', 'edit', 'string', num2str(cfg.translate(3)), 'callback', @cb_redraw)
ft_uilayout(figHandle, 'tag', 'translateui', 'BackgroundColor', [0.8 0.8 0.8], 'width', 2*CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
ft_uilayout(figHandle, 'tag', 'tx', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+3*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
ft_uilayout(figHandle, 'tag', 'ty', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+4*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
ft_uilayout(figHandle, 'tag', 'tz', 'BackgroundColor', [0.8 0.8 0.8], 'width', CONTROL_WIDTH, 'height', CONTROL_HEIGHT/2, 'hpos', CONTROL_HOFFSET+5*CONTROL_WIDTH, 'vpos', CONTROL_VOFFSET-2*CONTROL_HEIGHT);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_close(figHandle, varargin)
% the figure will be closed in the main function after collecting the guidata
uiresume;