forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_detect_movement.m
209 lines (179 loc) · 9.47 KB
/
ft_detect_movement.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
function [cfg movement] = ft_detect_movement(cfg, data)
% FT_SACCADE_DETECTION performs micro/saccade detection on time series data
% over multiple trials
%
% Use as
% movement = ft_detect_movement(cfg, data)
%
% The input data should be organised in a structure as obtained from the
% FT_PREPROCESSING function. The configuration depends on the type of
% computation that you want to perform.
%
% The configuration should contain:
% cfg.method = different methods of detecting different movement types
% 'velocity2D', Micro/saccade detection based on Engbert R,
% Kliegl R (2003) Vision Res 43:1035-1045. The method
% computes thresholds based on velocity changes from
% eyetracker data (horizontal and vertical components).
% 'clustering', Micro/saccade detection based on
% Otero-Millan et al., (2014) J Vis 14 (not implemented
% yet)
% cfg.channel = Nx1 cell-array with selection of channels, see
% FT_CHANNELSELECTION for details, (default = 'all')
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
%
% METHOD SPECIFIC OPTIONS AND DESCRIPTIONS
%
% VELOCITY2D
% VELOCITY2D detects micro/saccades using a two-dimensional (2D) velocity
% space velocity. The vertical and the horizontal eyetracker time series
% (one eye) are transformed into velocities and microsaccades are
% indentified as "outlier" eye movements that exceed a given velocity and
% duration threshold.
% cfg.velocity2D.kernel = vector 1 x nsamples, kernel to compute velocity (default = [1 1 0 -1 -1].*(data.fsample/6);
% cfg.velocity2D.demean = 'no' or 'yes', whether to apply centering correction (default = 'yes')
% cfg.velocity2D.mindur = minimum microsaccade durantion in samples (default = 3);
% cfg.velocity2D.velthres = threshold for velocity outlier detection (default = 6);
%
% The output argument "movement" is a Nx3 matrix. The first and second
% columns specify the begining and end samples of a movement period
% (saccade, joystic...), and the third column contains the peak
% velocity/acceleration movement. This last thrid column will allow to
% convert movements into spike data representation, making the spike
% toolbox functions compatible (not implemented yet).
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_PLOT_MOVEMENT (not implemented yet)
% Copyright (C) 2014, Diego Lozano-Soldevilla, Robert Oostenveld
%
% $Id$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the initial part deals with parsing the input options and data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
revision = '$Id$';
% do the general setup of the function
% the ft_preamble function works by calling a number of scripts from
% fieldtrip/utility/private that are able to modify the local workspace
ft_defaults % this ensures that the path is correct and that the ft_defaults global variable is available
ft_preamble init % this will reset ft_warning and show the function help if nargin==0 and return an error
ft_preamble provenance % this records the time and memory usage at the beginning of the function
ft_preamble trackconfig % this converts the cfg structure in a config object, which tracks the cfg options that are being used
ft_preamble debug % this allows for displaying or saving the function name and input arguments upon an error
ft_preamble loadvar data % this reads the input data in case the user specified the cfg.inputfile option
% ensure that the input data is valid for this function, this will also do
% backward-compatibility conversions of old data that for example was
% read from an old *.mat file
data = ft_checkdata(data, 'datatype', {'raw'}, 'feedback', 'yes', 'hassampleinfo', 'yes', 'hasoffset', 'yes');
if isfield(data,'fsample');
fsample = getsubfield(data,'fsample');
else
fsample = 1./(mean(diff(data.time{1})));
end
% set the defaults
cfg.method = ft_getopt(cfg, 'method', 'velocity2D');
cfg.feedback = ft_getopt(cfg, 'feedback', 'yes');
% set the defaults for the various microsaccade detection methods
switch cfg.method
case 'velocity2D'
% Engbert R, Kliegl R (2003) Microsaccades uncover the orientation of
% covert attention. Vision Res 43:1035-1045.
kernel = [1 1 0 -1 -1].*(fsample/6); % this is equivalent to Engbert et al (2003) Vis Res, eqn. (1)
if ~isfield(cfg.velocity2D, 'kernel'), cfg.velocity2D.kernel = kernel; end
if ~isfield(cfg.velocity2D, 'demean'), cfg.velocity2D.demean = 'yes'; end
if ~isfield(cfg.velocity2D, 'mindur'), cfg.velocity2D.mindur = 3; end % minimum microsaccade duration in samples
if ~isfield(cfg.velocity2D, 'velthres'), cfg.velocity2D.velthres = 6; end
case 'clustering'
error('not implemented yet');
% Otero-Millan J, Castro JLA, Macknik SL, Martinez-Conde S (2014)
% Unsupervised clustering method to detect microsaccades. J Vis 14.
otherwise
error('unsupported option for cfg.method');
end
% select channels and trials of interest, by default this will select all channels and trials
tmpcfg = keepfields(cfg, {'trials', 'channel'});
data = ft_selectdata(tmpcfg, data);
[cfg, data] = rollback_provenance(cfg, data);
% determine the size of the data
ntrial = length(data.trial);
nchan = length(data.label); % number of channels
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the actual computation is done in the middle part
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
movement = [];
ft_progress('init', cfg.feedback, 'processing trials');
% do all the computations
for i=1:ntrial
ft_progress(i/ntrial, 'finding microsaccades trial %d of %d\n', i, ntrial);
dat = data.trial{i};
time = data.time{i};
ndatsample = size(dat,2);
switch cfg.method
case 'velocity2D'
% demean horizontal and vertical time courses
if strcmp(cfg.velocity2D.demean,'yes');
dat = ft_preproc_polyremoval(dat, 0, 1, ndatsample);
end
%% eye velocity computation
% deal with padding
n = size(cfg.velocity2D.kernel,2);
pad = ceil(n/2);
dat = ft_preproc_padding(dat, 'localmean', pad);
% convolution. See Engbert et al (2003) Vis Res, eqn. (1)
if n<100
% heuristic: for large kernel the convolution is faster when done along
% the columns, weighing against the costs of doing the transposition.
% the threshold of 100 is a bit ad hoc.
vel = convn(dat, cfg.velocity2D.kernel, 'same');
else
vel = convn(dat.', cfg.velocity2D.kernel.', 'same').';
end
% cut the eges
vel = ft_preproc_padding(vel, 'remove', pad);
%% microsaccade detection
% compute velocity thresholds as in Engbert et al (2003) Vis Res, eqn. (2)
medianstd = sqrt( median(vel.^2,2) - (median(vel,2)).^2 );
% Engbert et al (2003) Vis Res, eqn. (3)
radius = cfg.velocity2D.velthres*medianstd;
% compute test criterion: ellipse equation
test = sum((vel./radius(:,ones(1,ndatsample))).^2,1);
sacsmp = find(test>1);% microsaccade's indexing
%% determine microsaccades per trial
% first find eye movements of n-consecutive time points
j = find(diff(sacsmp)==1);
j1 = [j; j+1];
com = intersect(j,j+1);
cut = ~ismember(j1,com);
sacidx = reshape(j1(cut),2,[]);
for k=1:size(sacidx,2);
duration = sacidx(1,k):sacidx(2,k);
if size(duration,2) >= cfg.velocity2D.mindur;
% finding peak velocity by Pitagoras
begtrl = sacsmp(duration(1,1));
endtrl = sacsmp(duration(1,end));
[peakvel smptrl] = max(sqrt(sum(vel(:,begtrl:endtrl).^2,1)));
veltrl = sacsmp(duration(1,smptrl));% peak velocity microsaccade sample -> important for spike conversion
trlsmp = data.sampleinfo(i,1):data.sampleinfo(i,2);
begsample = trlsmp(1, begtrl); % begining microsaccade sample
endsample = trlsmp(1, endtrl); % end microsaccade sample
velsample = trlsmp(1, veltrl); % velocity peak microsaccade sample
movement(end+1,:) = [begsample endsample velsample];
end
end
case 'clustering';
%not implemented yet
end
end
ft_progress('close');
ft_postamble debug % this clears the onCleanup function used for debugging in case of an error
ft_postamble trackconfig % this converts the config object back into a struct and can report on the unused fields
ft_postamble provenance % this records the time and memory at the end of the function, prints them on screen and adds this information together with the function name and MATLAB version etc. to the output cfg
ft_postamble previous data % this copies the data.cfg structure into the cfg.previous field. You can also use it for multiple inputs, or for "varargin"
ft_postamble history eye % this adds the local cfg structure to the output data structure, i.e. eye.cfg = cfg
ft_postamble savevar eye % this saves the output data structure to disk in case the user specified the cfg.outputfile option