forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_prepare_leadfield.m
269 lines (236 loc) · 11.6 KB
/
ft_prepare_leadfield.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
function [grid, cfg] = ft_prepare_leadfield(cfg, data)
% FT_PREPARE_LEADFIELD computes the forward model for many dipole locations
% on a regular 2D or 3D grid and stores it for efficient inverse modelling
%
% Use as
% [grid] = ft_prepare_leadfield(cfg, data);
%
% It is neccessary to input the data on which you want to perform the
% inverse computations, since that data generally contain the gradiometer
% information and information about the channels that should be included in
% the forward model computation. The data structure can be either obtained
% from FT_PREPROCESSING, FT_FREQANALYSIS or FT_TIMELOCKANALYSIS. If the data is empty,
% all channels will be included in the forward model.
%
% The configuration should contain
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'),
% see FT_CHANNELSELECTION for details
%
% The positions of the sources can be specified as a regular 3-D
% grid that is aligned with the axes of the head coordinate system
% cfg.grid.xgrid = vector (e.g. -20:1:20) or 'auto' (default = 'auto')
% cfg.grid.ygrid = vector (e.g. -20:1:20) or 'auto' (default = 'auto')
% cfg.grid.zgrid = vector (e.g. 0:1:20) or 'auto' (default = 'auto')
% cfg.grid.resolution = number (e.g. 1 cm) for automatic grid generation
% Alternatively the position of a few sources at locations of interest can
% be specified, for example obtained from an anatomical or functional MRI
% cfg.grid.pos = N*3 matrix with position of each source
% cfg.grid.inside = N*1 vector with boolean value whether grid point is inside brain (optional)
% cfg.grid.dim = [Nx Ny Nz] vector with dimensions in case of 3-D grid (optional)
%
% The volume conduction model of the head should be specified as
% cfg.vol = structure with volume conduction model, see FT_PREPARE_HEADMODEL
% cfg.hdmfile = name of file containing the volume conduction model, see FT_READ_VOL
%
% The EEG or MEG sensor positions can be present in the data or can be specified as
% cfg.elec = structure with electrode positions, see FT_DATATYPE_SENS
% cfg.grad = structure with gradiometer definition, see FT_DATATYPE_SENS
% cfg.elecfile = name of file containing the electrode positions, see FT_READ_SENS
% cfg.gradfile = name of file containing the gradiometer definition, see FT_READ_SENS
%
% Optionally, you can modify the leadfields by reducing the rank (i.e.
% remove the weakest orientation), or by normalizing each column.
% cfg.reducerank = 'no', or number (default = 3 for EEG, 2 for MEG)
% cfg.normalize = 'yes' or 'no' (default = 'no')
% cfg.normalizeparam = depth normalization parameter (default = 0.5)
% cfg.backproject = 'yes' or 'no' (default = 'yes') determines when reducerank is applied
% whether the lower rank leadfield is projected back onto the original
% linear subspace, or not.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% If you specify this option the input data will be read from a *.mat
% file on disk. This mat files should contain only a single variable named 'data',
% corresponding to the input structure.
%
% See also FT_SOURCEANALYSIS, FT_DIPOLEFITTING, FT_PREPARE_HEADMODEL,
% FT_PREPARE_SOURCEMODEL
% Undocumented local options:
% cfg.feedback
% cfg.sel50p = 'no' (default) or 'yes'
% cfg.lbex = 'no' (default) or a number that corresponds with the radius
% cfg.mollify = 'no' (default) or a number that corresponds with the FWHM
% Copyright (C) 2004-2013, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
revision = '$Id$';
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble provenance
ft_preamble trackconfig
ft_preamble debug
ft_preamble loadvar data
% the abort variable is set to true or false in ft_preamble_init
if abort
return
end
if nargin<2
% the data variable will be passed to the prepare_headmodel function below
% where it would be used for channel selection
data = [];
else
% check if the input data is valid for this function
data = ft_checkdata(data);
end
% set the defaults
cfg.normalize = ft_getopt(cfg, 'normalize', 'no');
cfg.normalizeparam = ft_getopt(cfg, 'normalizeparam', 0.5);
cfg.lbex = ft_getopt(cfg, 'lbex', 'no');
cfg.sel50p = ft_getopt(cfg, 'sel50p', 'no');
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
cfg.mollify = ft_getopt(cfg, 'mollify', 'no');
cfg.patchsvd = ft_getopt(cfg, 'patchsvd', 'no');
cfg.backproject = ft_getopt(cfg, 'backproject', 'yes'); % determines whether after rank reduction the subspace projected leadfield is backprojected onto the original space
% cfg.reducerank = ft_getopt(cfg, 'reducerank', 'no'); % the default for this depends on EEG/MEG and is set below
% put the low-level options pertaining to the dipole grid in their own field
cfg = ft_checkconfig(cfg, 'renamed', {'tightgrid', 'tight'}); % this is moved to cfg.grid.tight by the subsequent createsubcfg
cfg = ft_checkconfig(cfg, 'renamed', {'sourceunits', 'unit'}); % this is moved to cfg.grid.unit by the subsequent createsubcfg
cfg = ft_checkconfig(cfg, 'createsubcfg', {'grid'});
% this code expects the inside to be represented as a logical array
cfg.grid = ft_checkconfig(cfg.grid, 'renamed', {'pnt' 'pos'});
cfg = ft_checkconfig(cfg, 'index2logical', 'yes');
if strcmp(cfg.sel50p, 'yes') && strcmp(cfg.lbex, 'yes')
error('subspace projection with either lbex or sel50p is mutually exclusive');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% collect and preprocess the electrodes/gradiometer and head model
[vol, sens, cfg] = prepare_headmodel(cfg, data);
% set the default for reducing the rank of the leadfields
if ft_senstype(sens, 'eeg')
cfg.reducerank = ft_getopt(cfg, 'reducerank', 3);
else
cfg.reducerank = ft_getopt(cfg, 'reducerank', 2);
end
% construct the dipole grid according to the configuration
tmpcfg = [];
tmpcfg.vol = vol;
tmpcfg.grad = sens; % this can be electrodes or gradiometers
% copy all options that are potentially used in ft_prepare_sourcemodel
try, tmpcfg.grid = cfg.grid; end
try, tmpcfg.mri = cfg.mri; end
try, tmpcfg.headshape = cfg.headshape; end
try, tmpcfg.symmetry = cfg.symmetry; end
try, tmpcfg.smooth = cfg.smooth; end
try, tmpcfg.threshold = cfg.threshold; end
try, tmpcfg.spheremesh = cfg.spheremesh; end
try, tmpcfg.inwardshift = cfg.inwardshift; end
grid = ft_prepare_sourcemodel(tmpcfg);
% check whether units are equal (NOTE: this was previously not required,
% this check can be removed if the underlying bug is resolved. See
% http://bugzilla.fcdonders.nl/show_bug.cgi?id=2387
if ~isfield(vol, 'unit') || ~isfield(grid, 'unit') || ~isfield(sens, 'unit')
warning('cannot determine the units of all geometric objects required for leadfield computation (headmodel, sourcemodel, sensor configuration). THIS CAN LEAD TO WRONG RESULTS! (refer to http://bugzilla.fcdonders.nl/show_bug.cgi?id=2387)');
else
if ~strcmp(vol.unit, grid.unit) || ~strcmp(grid.unit, sens.unit)
error('geometric objects (headmodel, sourcemodel, sensor configuration) are not expressed in the same units (this used to be allowed, and will be again in the future, but for now there is a bug which prevents a correct leadfield from being computed; see http://bugzilla.fcdonders.nl/show_bug.cgi?id=2387)');
end
end
if ft_voltype(vol, 'openmeeg')
% repeated system calls to the openmeeg executable makes it rather slow
% calling it once is much more efficient
fprintf('calculating leadfield for all positions at once, this may take a while...\n');
% find the indices of all grid points that are inside the brain
insideindx = find(grid.inside);
ndip = length(insideindx);
ok = false(1,ndip);
batchsize = ndip;
while ~all(ok)
% find the first one that is not yet done
begdip = find(~ok, 1);
% define a batch of dipoles to jointly deal with
enddip = min((begdip+batchsize-1), ndip); % don't go beyond the end
batch = begdip:enddip;
try
lf = ft_compute_leadfield(grid.pos(insideindx(batch),:), sens, vol, 'reducerank', cfg.reducerank, 'normalize', cfg.normalize, 'normalizeparam', cfg.normalizeparam);
ok(batch) = true;
catch
ok(batch) = false;
% the "catch me" syntax is broken on MATLAB74, this fixes it
me = lasterror;
if ~isempty(findstr(me.message, 'Output argument "dsm" (and maybe others) not assigned during call to'))
% it does not fit in memory, split the problem in two halves and try once more
batchsize = floor(batchsize/500);
continue
else
rethrow(me);
end % handling this particular error
end
% reassign the large leadfield matrix over the single grid locations
for i=1:length(batch)
sel = (3*i-2):(3*i); % 1:3, 4:6, ...
dipindx = insideindx(batch(i));
grid.leadfield{dipindx} = lf(:,sel);
end
clear lf
end % while
else
% find the indices of all grid points that are inside the brain
insideindx = find(grid.inside);
ft_progress('init', cfg.feedback, 'computing leadfield');
for i=1:length(insideindx)
% compute the leadfield on all grid positions inside the brain
ft_progress(i/length(insideindx), 'computing leadfield %d/%d\n', i, length(insideindx));
thisindx = insideindx(i);
grid.leadfield{thisindx} = ft_compute_leadfield(grid.pos(thisindx,:), sens, vol, 'reducerank', cfg.reducerank, 'normalize', cfg.normalize, 'normalizeparam', cfg.normalizeparam, 'backproject', cfg.backproject);
if isfield(cfg, 'grid') && isfield(cfg.grid, 'mom')
% multiply with the normalized dipole moment to get the leadfield in the desired orientation
grid.leadfield{thisindx} = grid.leadfield{thisindx} * grid.mom(:,thisindx);
end
end % for all grid locations inside the brain
ft_progress('close');
end
% represent the leadfield for positions outside the brain as empty array
grid.leadfield(~grid.inside) = {[]};
% add the label of the channels
grid.label = sens.label;
grid.leadfielddimord = '{pos}_chan_ori';
% mollify the leadfields
if ~strcmp(cfg.mollify, 'no')
grid = mollify(cfg, grid);
end
% combine leadfields in patches and do an SVD on them
if ~strcmp(cfg.patchsvd, 'no')
grid = patchsvd(cfg, grid);
end
% compute the 50 percent channel selection subspace projection
if ~strcmp(cfg.sel50p, 'no')
grid = sel50p(cfg, grid, sens);
end
% compute the local basis function expansion (LBEX) subspace projection
if ~strcmp(cfg.lbex, 'no')
grid = lbex(cfg, grid);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble provenance
ft_postamble previous data
ft_postamble history grid