-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathComposition-rendering.cpp
334 lines (272 loc) · 10.1 KB
/
Composition-rendering.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#include "Composition.hpp"
#include <mutex>
#include <condition_variable>
#include <thread>
#include <iostream>
#include <algorithm>
#include <array>
#include <chrono>
#include "otfft/otfft.h"
constexpr uint32_t FFTSize = (1<<13);
static std::vector< std::shared_ptr< Composition::RenderBlock > > finished;
static std::vector< std::shared_ptr< Composition::RenderBlock > > pending;
static std::mutex mutex;
static std::condition_variable cv;
static std::list< std::thread > render_threads;
static bool quit_flag = false;
constexpr uint32_t BlockPadding = FFTSize / 2;
void Composition::quit_render_threads() {
{
std::unique_lock< std::mutex > lock(mutex);
quit_flag = true;
cv.notify_all();
}
//wait for 'em to finish:
while (!render_threads.empty()) {
render_threads.back().join();
render_threads.pop_back();
}
}
void Composition::render(int32_t begin_sample, int32_t end_sample, std::vector< Sample > *buffer_, bool blocking) {
assert(begin_sample <= end_sample);
assert(buffer_);
auto &buffer = *buffer_;
buffer.assign(end_sample - begin_sample, Sample(0));
if (blocking) {
while (true) {
update_rendered((begin_sample + end_sample) / float(2 * SampleRate));
uint32_t dirty = 0;
for (auto const &[ idx, block ] : rendered) {
if (block->dirty) {
++dirty;
}
}
if (dirty == 0) break;
std::cout << "Waiting for " << dirty << " blocks to finish..." << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
}
for (auto const &[ idx, block ] : rendered) {
if (block->dirty) continue;
assert(block->samples.size() == BlockSize);
int32_t begin = std::max(begin_sample, block->start_sample);
int32_t end = std::min< int32_t >(end_sample, block->start_sample + BlockSize);
for (int32_t s = begin; s < end; ++s) {
buffer[s-begin_sample] = block->samples[s-block->start_sample];
}
}
}
void Composition::update_rendered(Time focus) {
while (render_threads.size() < 4) {
render_threads.emplace_back([](){
std::unique_lock< std::mutex > lock(mutex);
std::cout << "Render thread started." << std::endl;
while (!quit_flag) {
if (pending.empty()) {
cv.wait(lock);
continue;
}
std::shared_ptr< RenderBlock > block = pending.back();
pending.pop_back();
block->pending = false; //mark as no longer being in pending queue
//std::cout << "Doing block " << block->DEBUG_id << std::endl;
lock.unlock();
block->render();
lock.lock();
//std::cout << " done " << block->DEBUG_id << std::endl;
finished.emplace_back(block);
}
std::cout << "Render thread stopped." << std::endl;
});
}
{ //bring in any finished blocks from render queue / mark ready for use:
std::unique_lock< std::mutex > lock(mutex);
for (auto &b : finished) {
b->dirty = false;
assert(b->tex == 0); //only way to get into render list is to be a new block, new blocks have tex == 0
//do texture upload:
if (!unused_tex.empty()) {
b->tex = *unused_tex.begin();
unused_tex.erase(unused_tex.begin());
} else {
glGenTextures(1, &(b->tex));
}
glBindTexture(GL_TEXTURE_2D, b->tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, SpectrumBins, b->spectrums.size(), 0, GL_RED, GL_FLOAT, b->spectrums.data());
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
}
finished.clear();
}
//Sort triggers to blocks.
std::map< int32_t, std::shared_ptr< RenderBlock > > new_blocks;
//render a bit past song ends:
int32_t first_block = int32_t(std::floor( ((std::min(begin, loop_begin) - 4.0f) * SampleRate) / float(BlockSize) ));
int32_t last_block = int32_t(std::floor( ((std::max(end, loop_end) + 4.0f) * SampleRate) / float(BlockSize) ));
for (auto const &trigger : triggers) {
int32_t min_block = int32_t(std::floor((trigger->begin_sample() - int32_t(BlockPadding)) / float(BlockSize)));
int32_t max_block = int32_t(std::floor((trigger->end_sample() + int32_t(BlockPadding)) / float(BlockSize)));
min_block = std::max(min_block, first_block);
max_block = std::min(max_block, last_block);
for (int32_t b = min_block; b <= max_block; ++b) {
auto &ptr = new_blocks[b];
if (!ptr) {
ptr = std::make_shared< RenderBlock >();
ptr->start_sample = b * int32_t(BlockSize);
}
ptr->triggers.emplace_back(trigger);
}
}
//For each block, check if triggers list matches, if not set dirty and queue new block for render:
auto free_tex = [this](RenderBlock &rb) {
if (rb.tex != 0) {
unused_tex.insert(rb.tex);
rb.tex = 0;
}
};
//trim to the current render range:
/* These aren't needed, as far as I can tell?
while (!rendered.empty() && rendered.begin()->first < first_block) {
free_tex(*rendered.begin()->second);
rendered.erase(rendered.begin());
}
while (!rendered.empty() && rendered.rbegin()->first > last_block) {
auto end = rendered.end();
--end;
free_tex(*end->second);
rendered.erase(end);
}
*/
auto new_block = new_blocks.begin();
auto old_block = rendered.begin();
while (old_block != rendered.end() && new_block != new_blocks.end()) {
if (old_block->first < new_block->first) {
//old_block doesn't appear in new list? evict!
free_tex(*old_block->second);
old_block = rendered.erase(old_block);
continue;
} else if (new_block->first < old_block->first) {
//new_block doesn't appear in old list? add!
rendered.emplace_hint(old_block, *new_block);
++new_block;
} else {
assert(new_block->first == old_block->first);
if (new_block->second->triggers != old_block->second->triggers) {
free_tex(*old_block->second);
old_block->second = new_block->second;
}
++old_block;
++new_block;
}
}
while (old_block != rendered.end()) {
free_tex(*old_block->second);
old_block = rendered.erase(old_block);
}
while (new_block != new_blocks.end()) {
rendered.emplace_hint(rendered.end(), *new_block);
++new_block;
}
{ //re-make pending list:
std::vector< std::shared_ptr< Composition::RenderBlock > > new_pending;
for (auto &[ block, ptr ] : rendered) {
if (ptr->pending) {
//static uint32_t fresh_id = 1;
//ptr->DEBUG_id = fresh_id++;
new_pending.emplace_back(ptr);
}
}
std::unique_lock< std::mutex > lock(mutex);
pending = std::move(new_pending);
if (!pending.empty()) {
cv.notify_all();
}
}
}
void Composition::RenderBlock::render() {
std::vector< Sample > padded(BlockPadding + BlockSize + BlockPadding, 0.0f);
int32_t padded_begin = start_sample - int32_t(BlockPadding);
int32_t padded_end = padded_begin + int32_t(padded.size());
constexpr int32_t FadeLen = SampleRate / 20;
for (auto const &t : triggers) {
int32_t t_begin = t->begin_sample();
int32_t t_end = t_begin + int32_t(t->sources.size());
int32_t t_fade = std::max(t_begin, t_end - FadeLen);
int32_t begin = std::max(padded_begin, t_begin);
int32_t end = std::min(padded_end, t_fade);
for (int32_t s = begin; s < end; ++s) {
int32_t from = int32_t(std::round(t->sources[s-t_begin]));
if (from > 0 && from < int32_t(t->sound->size())) {
padded[s-padded_begin] += (*t->sound)[from];
}
}
int32_t f_begin = std::max(padded_begin, t_fade);
int32_t f_end = std::min(padded_end, t_end);
for (int32_t s = f_begin; s < f_end; ++s) {
int32_t from = int32_t(std::round(t->sources[s-t_begin]));
if (from > 0 && from < int32_t(t->sound->size())) {
float amt = (f_end - s) / float(FadeLen);
padded[s-padded_begin] += amt * (*t->sound)[from];
}
}
}
{ //spectrum analysis!
spectrums.assign( BlockSize / SpectrumStep, std::array< float, SpectrumBins >() );
static thread_local OTFFT::simd_array< double > x(FFTSize);
static thread_local OTFFT::simd_array< OTFFT::complex_t > y(FFTSize);
//FFT processor:
static thread_local OTFFT::RFFT rfft(FFTSize);
const uint32_t spectrum_count = BlockSize / SpectrumStep;
for (uint32_t spectrum_index = 0; spectrum_index < spectrum_count; ++spectrum_index) {
uint32_t offset = spectrum_index * SpectrumStep;
assert(offset + FFTSize <= padded.size());
//NOTE: padding has space before and after block, so this results in FFTs centered on the desired position
for (uint32_t s = 0; s < FFTSize; ++s) {
x[s] = padded[offset + s];
}
//transform:
rfft.fwd(x.p, y.p);
auto &bins = spectrums[spectrum_index];
for (auto &v : bins) {
v = 0.0f;
}
//convert to power and place in bins:
// only do first half, since second half is symmetric negative-frequency stuff:
// also skip DC
for (uint32_t s = 1; s < FFTSize / 2; ++s) {
float power = (y[s].Re * y[s].Re + y[s].Im * y[s].Im);
power = (std::log10(power) + 10.0f) / 10.0f; //some ad-hoc transform
float min_freq = (s - 0.5f) * (float(SampleRate) / float(FFTSize));
float max_freq = (s + 0.5f) * (float(SampleRate) / float(FFTSize));
float min_bin = (std::log2(min_freq) - std::log2(SpectrumMinHz)) / (std::log2(SpectrumMaxHz) - std::log2(SpectrumMinHz)) * SpectrumBins;
float max_bin = (std::log2(max_freq) - std::log2(SpectrumMinHz)) / (std::log2(SpectrumMaxHz) - std::log2(SpectrumMinHz)) * SpectrumBins;
int32_t min_bin_int = int32_t(std::floor(min_bin));
int32_t max_bin_int = int32_t(std::floor(max_bin));
if (min_bin_int == max_bin_int) {
if (min_bin_int >= 0 && min_bin_int < int32_t(bins.size())) {
bins[min_bin_int] += (max_bin - min_bin) * power;
}
} else {
assert(min_bin_int < max_bin_int);
if (min_bin_int >= 0 && min_bin_int < int32_t(bins.size())) {
bins[min_bin_int] += (min_bin_int+1 - min_bin) * power;
}
for (int32_t b = min_bin_int + 1; b < max_bin_int; ++b) {
if (b >= 0 && b < int32_t(bins.size())) {
bins[b] = power;
}
}
if (max_bin_int >= 0 && max_bin_int < int32_t(bins.size())) {
bins[max_bin_int] += (max_bin - max_bin_int) * power;
}
}
}
}
}
//copy to samples:
samples.assign(padded.begin() + BlockPadding, padded.end() - BlockPadding);
}