-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
94 lines (79 loc) · 2.43 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
from ogb.graphproppred import Evaluator
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from utils import multioutput_auroc_score
def get_model(
dataset_name: str,
random_state: int,
hyperparams: dict,
verbose: bool,
):
# use less jobs in parallel for ToxCast to avoid OOM
n_jobs = 4 if dataset_name == "ogbg-moltoxcast" else -1
model = RandomForestClassifier(
**hyperparams,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
)
return model
def tune_hyperparameters(
X_train: np.ndarray, y_train: np.ndarray, verbose: bool
) -> dict:
# Scikit-learn has weird verbosity settings, to get reasonably verbose outputs
# we need to set 2
verbose = 2 if verbose else 0
model = RandomForestClassifier(
n_jobs=-1,
random_state=0,
)
params_grid = {
"n_estimators": [500, 750, 1000],
"criterion": ["gini", "entropy"],
"min_samples_split": [2, 3, 4, 5, 6, 7, 8, 9, 10],
"class_weight": [None, "balanced"],
}
cv = GridSearchCV(
estimator=model,
param_grid=params_grid,
n_jobs=1,
cv=5,
verbose=verbose,
)
cv.fit(X_train, y_train)
if verbose:
print(f"Best hyperparameters: {cv.best_params_}")
return cv.best_params_
def evaluate_model(
dataset_name: str,
task_type: str,
model,
X_test: np.ndarray,
y_test: np.ndarray,
) -> float:
# use OGB evaluation for MoleculeNet
if task_type == "classification":
y_pred = model.predict_proba(X_test)[:, 1]
y_test = y_test.reshape(-1, 1)
y_pred = y_pred.reshape(-1, 1)
elif task_type == "multioutput_classification":
# extract positive class probability for each task
y_pred = model.predict_proba(X_test)
y_pred = [y_pred_i[:, 1] for y_pred_i in y_pred]
y_pred = np.column_stack(y_pred)
else:
raise ValueError(f"Task type '{task_type}' not recognized")
# use AUROC for MUV instead of default AP to compare to papers
if dataset_name == "ogbg-molmuv":
return multioutput_auroc_score(y_test, y_pred)
evaluator = Evaluator(dataset_name)
metrics = evaluator.eval(
{
"y_true": y_test,
"y_pred": y_pred,
}
)
# extract the AUROC
metric = next(iter(metrics.values()))
return metric