-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathcreate_MARS_database.py
57 lines (50 loc) · 2.28 KB
/
create_MARS_database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
import os
import numpy as np
import scipy.io as sio
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir',help='path/to/MARS/')
parser.add_argument('--info_dir',help='path/to/MARS-evaluation/info/')
parser.add_argument('--output_dir',help='path/to/save/database',default='./MARS_database')
args = parser.parse_args()
os.system('mkdir -p %s'%(args.output_dir))
# Train
train_imgs = []
data_dir = os.path.join(args.data_dir,'bbox_train')
ids = sorted(os.listdir(data_dir))
for id in ids:
images = sorted(os.listdir(os.path.join(data_dir,id)))
for image in images:
if is_image_file(image):
train_imgs.append(os.path.abspath(os.path.join(data_dir,id,image)))
train_imgs = np.array(train_imgs)
np.savetxt(os.path.join(args.output_dir,'train_path.txt'),train_imgs,fmt='%s',delimiter='\n')
# Test
test_imgs = []
data_dir = os.path.join(args.data_dir,'bbox_test')
ids = sorted(os.listdir(data_dir))
for id in ids:
images = sorted(os.listdir(os.path.join(data_dir,id)))
for image in images:
if is_image_file(image):
test_imgs.append(os.path.abspath(os.path.join(data_dir,id,image)))
test_imgs = np.array(test_imgs)
np.savetxt(os.path.join(args.output_dir,'test_path.txt'),test_imgs,fmt='%s',delimiter='\n')
## process matfile
train_info = sio.loadmat(os.path.join(args.info_dir,'tracks_train_info.mat'))['track_train_info']
test_info = sio.loadmat(os.path.join(args.info_dir,'tracks_test_info.mat'))['track_test_info']
query_IDX = sio.loadmat(os.path.join(args.info_dir,'query_IDX.mat'))['query_IDX']
# start from 0 (matlab starts from 1)
train_info[:,0:2] = train_info[:,0:2]-1
test_info[:,0:2] = test_info[:,0:2]-1
query_IDX = query_IDX -1
np.save(os.path.join(args.output_dir,'train_info.npy'),train_info)
np.save(os.path.join(args.output_dir,'test_info.npy'),test_info)
np.save(os.path.join(args.output_dir,'query_IDX.npy'),query_IDX)