-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patheval_utils.py
263 lines (217 loc) · 9.58 KB
/
eval_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import numpy as np
import json
import string
import random
import os
import sys
import subprocess
import pickle
import csv
def id_generator(size=6, chars=string.ascii_uppercase + string.digits):
return ''.join(random.choice(chars) for _ in range(size))
def eval_fillin(preds, model_id, split, remove=False):
import sys
sys.path.append("codalab-2019-fill_in")
results = []
for pred in preds:
info = {'video_id': pred['video_id']}
info['characters'] = pred['characters']
results.append(info)
if remove:
model_id += id_generator() # to avoid processing and removing same ids
with open(os.path.join('character_eval', 'characters', 'character_' + model_id + '.csv'), 'w') as f:
keys = ['video_id', 'characters']
dict_writer = csv.DictWriter(f, keys, delimiter='\t')
dict_writer.writerows(results)
f.close()
eval_command = ["python","eval_characters.py", "-s",'characters/character_' + model_id + '.csv', "--split", split ,
"-o", 'results/result_' + model_id + '.json']
subprocess.call(eval_command,cwd='character_eval')
with open(os.path.join('character_eval', 'results','result_' + model_id + '.json'),'r') as f:
output = json.load(f)
f.close()
if remove: # remove for validation
os.remove(os.path.join('character_eval','characters','character_' + model_id + '.csv'))
os.remove(os.path.join('character_eval','results','result_' + model_id + '.json'))
return output
def calculate_gender_accuracy(preds):
correct = []
f_recall = []
f_precision = []
for pred in preds:
if type(pred['genders']) is not str:
for i in range(len(pred['genders'])):
correct.append(pred['genders'][i] == pred['gt_genders'][i])
if pred['gt_genders'][i] == 1:
f_recall.append(pred['genders'][i] == pred['gt_genders'][i])
if pred['genders'][i] == 1:
f_precision.append(pred['genders'][i] == pred['gt_genders'][i])
return np.mean(correct), np.mean(f_recall), np.mean(f_precision)
def decode_sequence(ix_to_word, seq):
D = seq.shape[0]
txt = ''
for j in range(D):
ix = seq[j]
if ix > 0 :
if j >= 1:
txt = txt + ' '
txt = txt + ix_to_word[str(ix)]
else:
break
return txt
def lst2string(lst):
txt = ''
for l in lst:
txt+= '[' + str(l) + ']' + ','
return txt[:-1]
def parse_predictions(predicted_characters, predicted_genders, slots):
def count_slot(slot):
return np.count_nonzero(slot + 1)
slots = slots.data.cpu().numpy()
predicted_characters = predicted_characters.data.cpu().numpy()
predicted_genders = predicted_genders.data.cpu().numpy()
total_pair = sum([count_slot(s) for s in slots])
characters = np.zeros(total_pair)
genders = np.zeros(total_pair)
n = 0
for i in range(len(slots)):
cs = count_slot(slots[i])
characters[n:n + cs] = predicted_characters[i, :cs]
genders[n:n + cs] = predicted_genders[i, :cs]
n += cs
return characters.astype(int), genders.astype(int)
def eval_split(gen_model, loader, eval_kwargs={}):
verbose = eval_kwargs.get('verbose', True)
num_videos = eval_kwargs.get('num_videos', eval_kwargs.get('val_videos_use', -1))
split = eval_kwargs.get('split', 'val')
eval_accuracy = eval_kwargs.get('eval_accuracy', 0)
ensemble = eval_kwargs.get('ensemble', 0)
sample_max = eval_kwargs.get('sample_max', 1)
beam_size = eval_kwargs.get('beam_size', 1)
num_samples = eval_kwargs.get('num_samples', 1)
num_captions = eval_kwargs.get('num_captions', 1)
remove_result = eval_kwargs.get('remove', 0) # usually remove captions in validation stage but not in test.
seed = eval_kwargs.get('seed', 1234)
model_id = eval_kwargs.get('id', eval_kwargs.get('val_id', ''))
if split == 'val':
model_id = 'val_' + model_id
if sample_max:
assert num_captions <= beam_size
else:
assert num_captions <= num_samples
# if use_context:
# gen_model.use_context()
# Make sure in the evaluation mode
gen_model.eval()
loader.reset_iterator(split)
n = 0
losses = []
loss = 0
predictions = []
first_id = None
saw_first = False
classify_gender = False
visualize = []
max_alphas =[]
while True:
data = loader.get_batch(split)
tmp = [data['fc_feats'], data['img_feats'], data['face_feats'], data['face_masks'],
data['captions'], data['masks'], data['bert_emb'], data['slots'], data['slot_masks'], data['characters'],
data['genders']]
tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp]
fc_feats, img_feats, face_feats, face_masks, captions, masks, bert_emb, slots, slot_masks, characters, genders = tmp
slot_size = data['slot_size']
torch.manual_seed(seed)
# forward the model to also get generated samples for each image
with torch.no_grad():
# calculate loss
if split != 'test' and not ensemble:
loss = gen_model(fc_feats, img_feats, face_feats, face_masks, captions, masks, bert_emb,
slots, slot_masks,slot_size, characters, genders)
loss = loss.mean()
losses.append(loss.item())
if split == 'test' or eval_accuracy:
predicted_characters, predicted_genders = gen_model(fc_feats, img_feats, face_feats, face_masks,
captions, masks, bert_emb, slots, slot_masks, slot_size,
mode='predict')
torch.cuda.synchronize()
predicted_characters, predicted_genders = parse_predictions(predicted_characters, predicted_genders, slots)
# if split == 'test':
alphas = gen_model.get_alpha()
g_id = -1
b = -1
s = 0
b_s = 0
slots = slots.data.cpu().numpy()
# print and store actual decoded sentence
for info in data['infos']:
entry = {'video_id': info['id'],'group_id' : info['g_index'],
'caption' : decode_sequence(loader.get_vocab(), info['caption'][1:-1]),
'characters' : '_', 'genders' : '_',
'gt_characters' : '_', 'gt_genders' : '_'}
if g_id != entry['group_id']:
if not info['skipped']:
b+=1
s_k = 0
b_s = 0
g_id = entry['group_id']
if not info['skipped'] and s_k in slots[b] and eval_accuracy:
num_clips = np.count_nonzero(slots[b]==s_k)
entry['characters'] = lst2string(predicted_characters[s:s+num_clips])
entry['genders'] = predicted_genders[s:s+num_clips]
if alphas is not None:
entry['alphas'] = alphas[b] # , s_k]
# entry['detections'] = data['face_feats'][b,:,:,:6]# s_k, :, :6]
if split != 'test':
entry['gt_characters'] = lst2string(characters[b][b_s:b_s+num_clips].data.cpu().numpy())
if genders is not None:
classify_gender = True
entry['gt_genders'] = genders[b][b_s:b_s+num_clips].data.cpu().numpy()
s += num_clips
b_s+=num_clips
s_k+=1
predictions.append(entry)
if verbose:
print('video %s: caption: %s; predicted characters: %s ; gt_characters: %s; predicted_genders: %s; gt_genders: %s' %
(entry['video_id'], entry['caption'].encode('ascii','ignore'), entry['characters'], entry['gt_characters'],
entry['genders'], entry['gt_genders']))
# if we wrapped around the split or used up val imgs budget then bail
if n == 0:
first_id = predictions[0]['group_id']
n = n + loader.batch_size
ix0 = data['bounds']['it_pos_now']
ix1 = data['bounds']['it_max']
sys.stdout.write("\revaluating validation preformance... %d/%d (%f)" %(ix0 - 1, ix1, loss))
sys.stdout.flush()
if data['bounds']['wrapped']:
img_id = predictions[-1]['group_id']
while True:
predictions.pop()
cur_id = predictions[-1]['group_id']
if cur_id != img_id:
img_id = cur_id
if saw_first:
break
if cur_id == first_id:
saw_first = True
break
if num_videos >= 0 and n >= num_videos:
break
# Switch back to training mode
gen_model.train()
# calculate accuracy scores
gen_loss = np.mean(losses)
accuracy = None
if eval_accuracy:
accuracy = eval_fillin(predictions, model_id, split, remove=remove_result)
if split != 'test' and classify_gender:
gender_accuracy, female_recall, female_precision = calculate_gender_accuracy(predictions)
print('gender_accuracy: ', gender_accuracy)
print('female recall: ', female_recall)
print('female precision: ', female_precision)
print('female F1: ', 2 * female_recall * female_precision / (female_recall + female_precision))
return gen_loss, predictions, accuracy