-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathopts.py
192 lines (168 loc) · 10.7 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import argparse
def parse_opt():
parser = argparse.ArgumentParser()
# ============================
# General Options
# ============================
# Data input settings
parser.add_argument('--input_json', type=str,
help='path to the json file containing additional info and vocab (img/video)')
parser.add_argument('--input_fc_dir', type=str,
help='path to the directory containing the preprocessed fc video features')
parser.add_argument('--input_img_dir', type=str,
help='path to the directory containing the image features (img)')
parser.add_argument('--input_face_dir', type=str,
help='path to the directory containing the face features')
parser.add_argument('--input_label_h5', type=str,
help='path to the h5file containing the preprocessed dataset (img/video)')
parser.add_argument('--clip_gender_json', type=str, help='clip gender json provided in data')
# Checkpoint Options
parser.add_argument('--start_from', type=str, default=None,
help="""skip pre training step and continue training from saved generator model at this path.
'infos_{id}.pkl' : configuration;
'gen_optimizer_{epoch}.pth' : optimizer;
'gen_{epoch}.pth' : model
""")
parser.add_argument('--start_epoch', type=str, default="latest",
help="""start training generator at epoch (int, latest, latest_ce, latest_scst)
""")
parser.add_argument('--pre_nepoch', type=int, default=80,
help='number of epochs to pre-train generator with cross entropy')
# Feature options
parser.add_argument('--fc_feat_size', type=int, default=1024,
help='1024 for i3d, 2048 for resnet, 4096 for vgg (img) \
500 for c3d, 8192 for r3d (video')
parser.add_argument('--img_feat_size', type=int, default=2048,
help='img feat size')
parser.add_argument('--face_feat_size', type=int, default=512 + 6,
help='face feat size')
# Visual Input Options
parser.add_argument('--use_video', type=int, default=1,
help='use video features (c3d/resnext101-64f) specified in input_fc_dir')
parser.add_argument('--use_img', type=int, default=0,
help='use resnet features specified in input_img_dir')
parser.add_argument('--use_face', type=int, default=1,
help='use face features')
parser.add_argument('--max_face', type=int, default=10,
help='number of face features per clip')
parser.add_argument('--max_sent_num', type=int, default=5,
help='max number of sentences per group (LSMDC has a group of 5 clips)')
parser.add_argument('--max_seg', type=int, default=5,
help='max number of segments to divide the clip features')
# ============================
# Model Options
# ============================
# model type
parser.add_argument('--classifier_type', type=str, default='transformer',
help='fillin_model classifier used given memory (rnn/transformer)')
# gender options
parser.add_argument('--classify_gender', action='store_true')
parser.add_argument('--gender_loss', type=float, default=0.2)
# bert embeddings
parser.add_argument('--use_bert_embedding', action='store_true', help='use pretrained bert embedding to encode captions instead of from scratch')
parser.add_argument('--bert_embedding_dir', type=str)
parser.add_argument('--bert_size', type=int, default=1536)
parser.add_argument('--use_both_captions', action='store_true')
# Memory: Sentence Embedding Options
parser.add_argument('--sent_type', type=str, default='rnn',
help='rnn or transformer for encoding sentence')
parser.add_argument('--rnn_size', type=int, default=512,
help='size of the rnn in number of hidden nodes in each layer')
parser.add_argument('--num_layers', type=int, default=1,
help='number of layers in the RNN')
parser.add_argument('--rnn_type', type=str, default='lstm',
help='rnn, gru, or lstm')
parser.add_argument('--bidirectional', type=int, default=1)
parser.add_argument('--before_after', action='store_true',
help='encode sentences before and after blank with rnn as two features')
parser.add_argument('--combine_before_after', action='store_true',
help='combine before after')
parser.add_argument('--sent_pool_type', type=str, default='last',
help='rnn pooling operation to use to get final sentence features (last/max)')
# Memory: Encoding Options
parser.add_argument('--video_encoding_size', type=int, default=256,
help='the encoding size of video fc features.')
parser.add_argument('--img_encoding_size', type=int, default=256,
help='the encoding size of image features.')
parser.add_argument('--face_encoding_size', type=int, default=512,
help='the encoding size of each frame of facial features.')
parser.add_argument('--word_encoding_size', type=int, default=512,
help='the encoding size of each token in the vocabulary')
parser.add_argument('--encoding_size', type=int, default=512,
help='encoding size for the final feature')
parser.add_argument('--memory_attention_size', type=int, default=32,
help='memory attention size for face attention prediction')
parser.add_argument('--l2norm', type=int, default=0,
help='If 1, then l2 normalize visual and language encoding space')
# ============================
# Optimization Options
# ============================
# Optimization: General
parser.add_argument('--batch_size', type=int, default=64,
help='minibatch size')
parser.add_argument('--grad_clip', type=float, default=0.1, #5.,
help='clip gradients at this value')
parser.add_argument('--drop_prob_lm', type=float, default=0.5,
help='strength of dropout in the Language Model RNN')
# Optimization: for the Language Model
parser.add_argument('--optim', type=str, default='adam',
help='what update to use? rmsprop|sgd|sgdmom|adagrad|adam')
parser.add_argument('--learning_rate', type=float, default=5e-5,
help='learning rate')
parser.add_argument('--learning_rate_decay_start', type=int, default=0,
help='at what iteration to start decaying learning rate? (-1 = dont) (in epoch)')
parser.add_argument('--learning_rate_decay_every', type=int, default=3,
help='every how many iterations thereafter to drop LR?(in epoch)')
parser.add_argument('--learning_rate_decay_rate', type=float, default=0.8,
help='every how many iterations thereafter to drop LR?(in epoch)')
parser.add_argument('--optim_alpha', type=float, default=0.9,
help='alpha for adam')
parser.add_argument('--optim_beta', type=float, default=0.999,
help='beta used for adam')
parser.add_argument('--optim_epsilon', type=float, default=1e-8,
help='epsilon that goes into denominator for smoothing')
parser.add_argument('--weight_decay', type=float, default=0,
help='weight_decay')
parser.add_argument('--scheduled_sampling_start', type=int, default=-1,
help='at what iteration to start decay gt probability')
parser.add_argument('--scheduled_sampling_increase_every', type=int, default=5,
help='every how many iterations thereafter to gt probability')
parser.add_argument('--scheduled_sampling_increase_prob', type=float, default=0.05,
help='How much to update the prob')
parser.add_argument('--scheduled_sampling_max_prob', type=float, default=0.25,
help='Maximum scheduled sampling prob.')
parser.add_argument('--glove', type=str, default=None,
help='text or npy containing glove vector associated with word_idx labels. \
builds a npy file in the same directory if text file is given')
# ============================
# Evaluation
# ============================
# Evaluation/Checkpointing
parser.add_argument('--val_id', type=str, default='',
help='id to use to save captions for validation')
parser.add_argument('--val_videos_use', type=int, default=-1,
help='how many videos to use when periodically evaluating the validation loss? (-1 = all)')
parser.add_argument('--losses_print_every', type=int, default=50,
help='How often do we want to print losses? (0 = disable)')
parser.add_argument('--save_checkpoint_every', type=int, default=5,
help='how often to save a model checkpoint in iterations? the code already saves checkpoint every epoch (0 = dont save; 1 = every epoch)')
parser.add_argument('--checkpoint_path', type=str, default='save',
help='directory to store checkpointed models')
parser.add_argument('--losses_log_every', type=int, default=50,
help='How often do we snapshot losses, for inclusion in the progress dump? (0 = disable)')
parser.add_argument('--eval_accuracy', type=int, default=1,
help='Evaluate accuracy during validation')
parser.add_argument('--load_best_score', type=int, default=1,
help='Do we load previous best score when resuming training.')
parser.add_argument('--reset_tensorboard', action='store_true')
args = parser.parse_args()
# Check if args are valid
assert args.rnn_size > 0, "rnn_size should be greater than 0"
assert args.num_layers > 0, "num_layers should be greater than 0"
assert args.batch_size > 0, "batch_size should be greater than 0"
assert args.drop_prob_lm >= 0 and args.drop_prob_lm < 1, "drop_prob_lm should be between 0 and 1"
assert args.losses_log_every > 0, "losses_log_every should be greater than 0"
assert args.eval_accuracy == 0 or args.eval_accuracy == 1, "eval_accuracy should be 0 or 1"
assert args.load_best_score == 0 or args.load_best_score == 1, "language_eval should be 0 or 1"
assert args.save_checkpoint_every >= 0, "saving checkpoint at every $epoch should be non-negative"
return args