-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvdd_batched.py
137 lines (117 loc) · 3.94 KB
/
vdd_batched.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
import matplotlib.pyplot as plt
from numba import njit
from pprint import pprint
import functools
# TODO: LRU memoization
# TODO: Loss function
# TODO: Fit to actual data
@njit
def linear_activation(evidence, noise, smoothing, x0=0.0, out=None):
x = x0
if out is None:
out = np.empty_like(evidence)
for i in range(len(evidence)):
x = smoothing*x + evidence[i] + noise[i]
out[i] = x
return out
@njit
def linear_activations(evidence, noises, smoothing, x0=0.0, out=None):
x = x0
if out is None:
out = np.empty(len(noises), len(evidence))
for i in range(len(noises)):
linear_activation(evidence, noises[i], smoothing, x0, out[i])
return out
@njit
def threshold_time(act, threshold, x0=0.0):
prev = x0
for i in range(len(act)):
if act[i] <= threshold:
prev = act[i]
continue
t = (threshold - prev)/(act[i] - prev)
return i + t
#return max(0.0, i + t)
return np.nan
@njit
def threshold_times(acts, threshold, x0=0.0):
prev = x0
out = np.empty(len(acts))
for i in range(len(acts)):
out[i] = threshold_time(acts[i], threshold, x0)
return out
def sample_loglik(sample, val):
# TODO: Proper normalization!
loglik = 0.0
for particle in sample:
loglik += (sample - val)**2
return loglik
def rt_distr(tau, noise_bank):
def get_activations(std, scale, smoothing, tau_threshold):
evidence = np.arctan((tau - tau_threshold)/scale)
noises = noise_bank*std*np.sqrt(dt)
return linear_activations(evidence, noises, smoothing)
def distr(std, scale, smoothing, tau_threshold, act_threshold):
activations = get_activations(std, scale, smoothing, tau_threshold)
samples = threshold_times(activations, act_threshold)
return lambda v: sample_loglik(samples, v)
return distr
N = 10000
dt = 1/90 # Check!
"""
def gridit(trajectories, noise_bank):
stds = np.linspace(0.01, 5.0, 10)
scales = np.linspace(0.01, 10.0, 10)
smoothings = np.linspace(0.0, 1.0, 10)
act_thresholds = np.linspace(0.01, 10.0, 10)
tau_thresholds = np.linspace(1.0, 10.0, 10)
for tau, reaction_times in trajectories:
for std in stds:
noises = noise_bank*std*np.sqrt(dt)
for scale in scales:
for tau_threshold in tau_thresholds:
evidence = np.arctan((tau - tau_threshold)/scale)
for smoothing in smoothings:
acts = []
for i in range(len(noises)):
act = linear_activations(evidence, noises[i], smoothing)
acts.append(act)
for act_threshold in act_thresholds:
rts = []
for act in acts:
rt = threshold_time(act, act_threshold)
rts.append(rt)
rts = np.array(rts)
params = dict(
std=std,
scale=scale,
tau_threshold=tau_threshold,
smoothing=smoothing,
act_threshold=act_threshold)
pprint(params)
plt.hist(rts[np.isfinite(rts)], density=True)
plt.show()
"""
dur = 20
ts = np.arange(0, dur, dt)
tau0 = 4.0
speed = 30.0
dist = tau0*speed - ts*speed
tau = dist/speed
np.random.seed(0)
noise_bank = np.random.randn(N, len(tau))
#trajectories = [
# (tau, [])
# ]
#gridit(trajectories, noise_bank)
distr = rt_distr(tau, noise_bank)
dist = distr(
std=1.0*np.sqrt(dt),
smoothing=0.5,
scale=1.0,
tau_threshold=4.0,
act_threshold=1.0
)
plt.plot(ts, dist(ts))
plt.show()