-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
447 lines (394 loc) · 18 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
<!doctype html>
<html lang="en">
<head>
<!-- meta -->
<meta type="author" content="Suraj Kesavan" />
<meta charset="utf-8" http-eqiv="content-type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, shrink-to-fit=no">
<!-- cdn + font -->
<link href="./fonts/Gentium-basic.css" rel="stylesheet">
<!-- css/js -->
<link rel="stylesheet" type="text/css" href="./css/bootstrap.min.css">
<link rel="stylesheet" type="text/css" href="./css/academicons.min.css">
<link rel="stylesheet" type="text/css" href="./css/all.min.css">
<link rel="stylesheet" type="text/css" href="./css/main.css">
<script src="./js/jquery.min.js"></script>
<script src="./js/app.js"></script>
<title>Suraj Kesavan - Personal website.</title>
</head>
<body>
<div class="container">
<!-- Header -->
<div class="row header-row">
<div class="col-lg-2 col-md-1 hidden-sm hidden-xs"></div>
<div class="col-lg-8 col-md-10 col-sm-12 header-column">
<div class="row">
<div class="col-xs-4 img-xs text-center hidden-sm hidden-md hidden-lg">
<img src="./media/me.jpg" alt="my face" class="img-rounded img-responsive">
</div>
<div class="col-sm-12 col-xs-8">
<div class="row">
<div class="col-sm-12">
<p class="header">Suraj P. <span class="last-name">Kesavan</span></p>
</div>
<div class="col-sm-6 header-right">
<div class="social-links-xs text-left hidden-sm hidden-md hidden-lg">
<a class="icons" href="mailto:[email protected]" target="_blank"><i
class="fas fa-envelope fa-1x"></i></a>
<a class="icons" href="https://github.com/jarusified" target="_blank"><i
class="fab fa-github fa-1x"></i></a>
<a class="icons" href="https://linkedin.com/in/" target="_blank"><i
class="fab fa-linkedin-in fa-1x"></i></a>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="col-lg-2 col-md-1 hidden-sm hidden-xs"></div>
</div>
<!-- Bio etc -->
<div class="content-row row">
<div class="col-lg-2 col-md-1 hidden-sm hidden-xs"></div>
<div class="col-lg-8 col-md-10 col-xs-12">
<div class="content-inner-row row">
<div class="col-xs-12 col-sm-9 content-col">
<p>
I’m a Ph.D. student at <a href="https://ucdavis.edu/">University of
California, Davis</a>. My research lies in the field
of Information Visualization, and I design
interactive visual analytical tools that help
analyze data to derive insights that help solve
real-life problems. As a main focus, I work in
collobaration with research scientists from <a href="https://www.llnl.gov/">Lawrence
Livermore
National Laboratory, Livermore, USA</a> to research
and develop an interactive tool, called <a
href="https://github.com/LLNL/CallFlow">CallFlow</a>,
to study <a href="https://en.wikipedia.org/wiki/Call_graph">performance
callgraphs</a> collected from supercomputers.
</p>
<p>
I obtained my B.S. in Instrumentation and Control
Engineering from the <a href="https://nitt.edu/">National Institute of
Technology, Tiruchirappalli. (NITT)</a>. At NITT, I
developed an interest towards coding through Delta,
a computer science student club, where I learnt to
develop web applications, and represented in
multiple <a href="https://ctftime.org/ctf-wtf/">Capture The Flag
(CTF)</a> events</a>.
</p>
<p>
</p>
</div>
<div class="col-sm-3 hidden-xs img-col text-center">
<img src="./media/me.jpg" alt="my face" class="img-md hidden-xs img-rounded img-responsive">
<div class="social-links text-center">
<a class="icons" href="mailto:[email protected]" target="_blank"><i
class="fas fa-envelope-square fa-3x"></i></a>
<a class="icons" href="https://github.com/jarusified" target="_blank">
<i class="fab fa-github-square fa-3x"></i>
</a>
<a class="icons" href="https://linkedin.com/in/surajkesavan" target="_blank">
<i class="fab fa-linkedin fa-3x"></i>
</a>
<a class="icons" href="https://scholar.google.com/citations?user=54vIJqAAAAAJ&hl=en"
target="_blank">
<i class="fab fa-google-scholar fa-3x"></i>
</a>
</div>
</div>
</div>
<hr>
</div>
<div class="col-lg-2 col-md-1 hidden-sm hidden-xs"></div>
</div>
<div id="education" class="paper-row row">
<div class="col-lg-2 col-md-1 hidden-sm hidden-xs"></div>
<div class="col-lg-8 col-md-10 col-sm-12">
<hr>
<div class="subheader-row row">
<div class="col-xs-12 subheader-col">
<p class="subheader">Articles</p>
</div>
</div>
<div class="papers-content-row row">
<div class="col-xs-12 papers-content-col">
<div class="all-div">
<a class="paper-title" target="_blank"
href="https://jarusified.github.io/2020-comparison-callflow.html">
Scalable Comparative Visualization of Ensembles of Call Graphs
</a>
<span class="year">
2020
</span>
<p class="paper-info">
<span class="paper-authors">
<span class="bold">Suraj P. Kesavan</span>, Harsh Bhatia,
Abhinav Bhatele, Todd Gamblin, Peer-Timo Bremer, and Kwan-Liu Ma.
</span><br />
<span class="paper-venue">
</span>
</p>
<div class="paper-buttons">
<a href="./media/pdf/2020-comparison-callflow.pdf" target="_blank"
class="paper-button">pdf</a>
<!-- <a href="./media/pdf/PVIS-PDES-Presentation-final.pdf" target="_blank"
class="paper-button">presentation slides</a> -->
<a id="p1" href="javascript:;" class="paper-button abstract-button">abstract</a>
<a href="https://github.com/jarusified/CallFlow" target="_blank" class="paper-button">code</a>
<!-- <a href="https://youtu.be/pxthZSJ1jqs" target="_blank" class="paper-button">demo video</a> -->
<a href="https://arxiv.org/abs/2007.01395" target="_blank"
class="paper-button">arxiv</a>
</div>
<div id="abs1" class="paper-abstract" style="display: none;">
<blockquote>
Optimizing the performance of large-scale parallel codes is critical for
efficient utilization of computing resources. Code developers often explore
various execution parameters, such as hardware configurations, system software
choices, and application parameters, and are interested in detecting and
understanding bottlenecks in different executions. They often collect
hierarchical performance profiles represented as call graphs, which combine
performance metrics with their execution contexts. The crucial task of exploring
multiple call graphs together is tedious and challenging because of the many
structural differences in the execution contexts and significant variability
in the collected performance metrics (e.g., execution runtime). In this paper,
we present an enhanced version of CallFlow to support the exploration of
ensembles of call graphs using new types of visualizations, analysis, graph
operations, and features. We introduce ensemble-Sankey, a new visual
design that combines the strengths of resource-flow (Sankey) and box-plot
visualization techniques. Whereas the resource-flow visualization can easily
and intuitively describe the graphical nature of the call graph, the box
plots overlaid on the nodes of Sankey convey the performance variability
within the ensemble. Our interactive visual interface provides linked views
to help explore ensembles of call graphs, e.g., by facilitating the analysis
of structural differences, and identifying similar or distinct call graphs.
We demonstrate the effectiveness and usefulness of our design through case
studies on large-scale parallel codes.
</blockquote>
</div>
</div>
<!-- PDES Streaming -->
<div class="all-div">
<a class="paper-title" target="_blank"
href="https://jarusified.github.io/2020-streaming.html">
A Visual Analytics Framework for Reviewing Streaming Performance Data.
</a>
<span class="year">
2020
</span>
<p class="paper-info">
<span class="paper-authors">
<span class="bold">Suraj P. Kesavan</span>, Takanori Fujiwara,
Jianping Kelvin Li, Caitlin Ross, Misbah Mubarak, Christopher D.Carothers,
Robert B.Ross, and Kwan-Liu Ma.
</span><br />
<span class="paper-venue">In Proceedings of IEEE Pacific Visualization Symposium
(PacificVis), forthcoming.
</span>
</p>
<div class="paper-buttons">
<a href="./media/pdf/2020-streaming-performance.pdf" target="_blank"
class="paper-button">pdf</a>
<a href="./media/pdf/PVIS-PDES-Presentation-final.pdf" target="_blank"
class="paper-button">presentation slides</a>
<a href="https://youtu.be/_2hQ0TSziVU" target="_blank" class="paper-button">presentation video</a>
<a id="p2" href="javascript:;" class="paper-button abstract-button">abstract</a>
<a href="./2020-streaming.html" target="_blank" class="paper-button">code</a>
<a href="https://youtu.be/pxthZSJ1jqs" target="_blank" class="paper-button">demo
video</a>
<a href="https://arxiv.org/abs/2001.09399" target="_blank"
class="paper-button">arxiv</a>
</div>
<div id="abs2" class="paper-abstract" style="display: none;">
<blockquote>
Understanding and tuning the performance of
extreme-scale parallel computing systems
demands a streaming approach due to the
computational cost of applying offline
algorithms to vast amounts of performance
log data. Analyzing large streaming data is
challenging because the rate of receiving
data and limited time to comprehend data
make it difficult for the analysts to
sufficiently examine the data without
missing important changes or patterns. To
support streaming data analysis, we
introduce a visual analytic framework
comprising of three modules: data
management, analysis, and interactive
visualization. The data management module
collects various computing and communication
performance metrics from the monitored
system using streaming data processing
techniques and feeds the data to the other
two modules. The analysis module
automatically identifies important changes
and patterns at the required latency. In
particular, we introduce a set of online and
progressive analysis methods for not only
controlling the computational costs but also
helping analysts better follow the critical
aspects of the analysis results. Finally,
the interactive visualization module
provides the analysts with a coherent view
of the changes and patterns in the
continuously captured performance data.
Through a multi-faceted case study on
performance analysis of parallel
discrete-event simulation, we demonstrate
the effectiveness of our framework for
identifying bottlenecks and locating
outliers.
</blockquote>
</div>
</div>
<!-- CallFlow -->
<div class="all-div">
<a class="paper-title" target="_blank" href="https://ieeexplore.ieee.org/document/8901998">
Visualizing Hierarchical Performance Profiles of Parallel Codes using CallFlow.
</a>
<span class="year">
2019
</span>
<p class="paper-info">
<span class="paper-authors">Huu Tan Pham Nguyen, Abhinav Bhatele, Nikhil Jain,
<span class="bold">Suraj P. Kesavan</span>, Harsh Bhatia,
Todd Gamblin, Kwan-Liu Ma and, Peer-Timo Bremer.
</span><br />
<span class="paper-venue">IEEE Transactions on Visualization and Computer Graphics,
2019.
</span>
</p>
<div class="paper-buttons">
<a href="./media/pdf/2019-callflow.pdf" target="_blank" class="paper-button">pdf</a>
<a href="./media/pdf/IEEE-VIS-2020-Presentation.pdf" target="_blank"
class="paper-button">presentation slides</a>
<a href="https://youtu.be/_2hQ0TSziVU" target="_blank" class="paper-button">presentation video</a>
<a id="p3" href="javascript:;" class="paper-button abstract-button">abstract</a>
<a href="https://github.com/LLNL/CallFlow" target="_blank" class="paper-button">code</a>
<a href="https://youtu.be/CYB3HzPe4mc" target="_blank" class="paper-button">demo video</a>
</div>
<div id="abs3" class="paper-abstract" style="display: none;">
<blockquote>
Calling context trees (CCTs) couple
performance metrics with call paths, helping
understand the execution and performance of
parallel programs. To identify performance
bottlenecks, programmers and performance
analysts visually explore CCTs to form and
validate hypotheses regarding degraded
performance. However, due to the complexity
of parallel programs, existing visual
representations do not scale to applications
running on a large number of processors. We
present CALLFLOW, an interactive visual
analysis tool that provides a high-level
overview of CCTs together with semantic
refinement operations to progressively
explore the CCTs. Using a flow-based
metaphor, we visualize a CCT by treating
execution time as a resource spent during a
call chain, and demonstrate the
effectiveness of our design with case
studies on large-scale, production
simulation codes.
</blockquote>
</div>
</div>
<!-- Visual data sceince paper. -->
<div class="all-div">
<a class="paper-title" target="_blank" href="">
A Visual Analytics Framework for Analyzing Parallel and Distributed Computing
Applications.</a>
<span class="year">
2019
</span>
<p class="paper-info">
<span class="paper-authors">Jianping Kelvin Li, Takanori Fujiwara,
<span class="bold">Suraj P. Kesavan,
</span>,
Caitlin Ross, Misbah Mubarak, Christopher D. Carothers, Robert B. Ross, and Kwan-Liu
Ma.
</span><br />
<span class="paper-venue">In Proceedings of Symposium on
<a target="_blank"
href="http://www.visualdatascience.org/2019/index.html">Visualization in Data
Science (VDS)</a>
</span>, 2019.
</p>
<div class="paper-buttons">
<a href="./media/pdf/2019-pdes-analysis.pdf" target="_blank"
class="paper-button">pdf</a>
<a id="p4" class="paper-button abstract-button">abstract</a>
<a href="https://github.com/HAVEX/ross-vis" target="_blank"
class="paper-button">code</a>
</div>
<div id="abs4" class="paper-abstract" style="display: none;">
<blockquote>
To optimize the performance and efficiency of HPC applications, programmers and
analysts often need to collect various performance metrics for each computer at
different time points as well as the communication data between the computers.
This results in a complex dataset that consists of multivariate time-series and
communication network data, which makes debugging and performance tuning of HPC
applications challenging. Automated analytical methods based on statistical
analysis and unsupervised learning are often insufficient to support such tasks
without the background knowledge from the application programmers. To better
explore and analyze a wide spectrum of HPC datasets, effective visual data
analytics techniques are needed. In this paper, we present a visual analytics
framework for analyzing HPC datasets produced by parallel discrete-event
simulations (PDES). Our framework leverages automated time-series analysis methods
and effective visualizations to analyze both multivariate time-series and
communication network data. Through several case studies for analyzing the
performance of PDES, we show that our visual analytics techniques and system can
be effective in reasoning multiple performance metrics, temporal behaviors
of the simulation, and the communication patterns.
</blockquote>
</div>
</div>
</div>
</div>
<hr>
<div class="subheader-row row">
<div class="col-xs-12 subheader-col">
<p class="subheader">Education</p>
</div>
</div>
<div class="papers-content-row row">
<div class="col-xs-12 papers-content-col">
<div class="all-div">
<a class="paper-title" target="_blank" href="https://cs.ucdavis.edu/">
University of California, Davis
</a>
<span class="year">2016 - present</span>
<p class="paper-info">
<span class="paper-authors">
<span class="bold">Ph.D. in Computer Science, GPA: 3.82/4.0</span>.
</p>
</div>
</div>
</div>
<div class="papers-content-row row">
<div class="col-xs-12 papers-content-col">
<div class="all-div">
<a class="paper-title" target="_blank" href="https://www.nitt.edu/">
National Institute of Technology, Tiruchirappalli
</a>
<span class="year">
2012 - 2016
</span>
<p class="paper-info">
<span class="paper-authors">
<span class="bold">Bachelors in Instrumentation & Control Engineering, GPA:
7.43/10.0</span>.
</p>
<p class="paper-info">
</p>
</div>
</div>
</div>
</div>
<div class="col-lg-2 col-md-1 hidden-sm hidden-xs"></div>
</div>
</body>
</html>