-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathzero_forcing_64.pyx
360 lines (292 loc) · 24.8 KB
/
zero_forcing_64.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# -*- coding: utf-8 -*-
"""
Zero forcing
This module implements zero forcing using fast bitsets, automorphisms
of the graph, and a brute-force approach to trying various bitsets.
"""
#######################################################################
#
# Copyright (C) 2008 Jason Grout.
#
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.
#######################################################################
from sage.misc.misc import verbose
ctypedef unsigned long long bitset_t
cdef int BITSET_SIZE = 64
# If you change BITSET_SIZE and bitset_t, you must search for BITSET_SIZE
# in the comments below and change the corresponding numbers.
cdef inline bitset_t bitset_set(bitset_t bitset, int pos):
return bitset | (<bitset_t>1<<pos)
cdef inline bitset_t bitset_clear(bitset_t bitset, int pos):
return bitset & ~(<bitset_t>1<<pos)
cdef inline bitset_t bitset_union(bitset_t bitset, bitset_t bitset2):
return (bitset) | (bitset2)
cdef inline bitset_t bitset_intersection(bitset_t bitset, bitset_t bitset2):
return (bitset) & (bitset2)
cdef inline bitset_t bitset_difference(bitset_t bitset, bitset_t bitset2):
return (bitset) & ~(bitset2)
cdef inline int bitset_check(bitset_t bitset, int pos):
return (bitset>>pos)&1
cdef bitset_t BITSET_EMPTY = <bitset_t>0
cdef inline bitset_t bitset_full(int length):
return(<bitset_t>1<<length)-1
cdef int bitset_find(bitset_t bitset, int pos):
cdef int i
for i from pos<=i<BITSET_SIZE:
if bitset_check(bitset,i):
return i
return -1
cdef int bitset_next(bitset_t bitset, int pos):
return bitset_find(bitset, pos+1)
cdef bitset_t zeros_game(bitset_t neighbor_list[64], bitset_t initial_set): # BITSET_SIZE
cdef int i,j, active_pos, first_nonzero_neighbor, second_nonzero_neighbor
cdef bitset_t new_zero_set = initial_set
cdef bitset_t zero_set = BITSET_EMPTY
cdef bitset_t active_zero_set = BITSET_EMPTY
cdef bitset_t inactive_zero_set = BITSET_EMPTY
cdef bint another_run=1
cdef bitset_t nonzero_neighbors[64] #BITSET_SIZE
for i from 0<=i<BITSET_SIZE:
nonzero_neighbors[i] = neighbor_list[i]
while another_run:
another_run=0
# Update the sets
zero_set = bitset_union(zero_set, new_zero_set)
active_zero_set = bitset_union(active_zero_set, new_zero_set)
active_zero_set = bitset_difference(active_zero_set, inactive_zero_set)
new_zero_set = BITSET_EMPTY
inactive_zero_set = BITSET_EMPTY
active_pos = bitset_find(active_zero_set, 0)
while active_pos >= 0:
nonzero_neighbors[active_pos] = bitset_difference( nonzero_neighbors[active_pos], zero_set)
first_nonzero_neighbor = bitset_find(nonzero_neighbors[active_pos],0)
if first_nonzero_neighbor == -1:
inactive_zero_set = bitset_set(inactive_zero_set, active_pos)
else:
second_nonzero_neighbor = bitset_next(nonzero_neighbors[active_pos],first_nonzero_neighbor)
if second_nonzero_neighbor == -1:
new_zero_set = bitset_set(new_zero_set, first_nonzero_neighbor)
inactive_zero_set = bitset_set(inactive_zero_set,active_pos)
another_run=1
active_pos = bitset_next(active_zero_set, active_pos)
return zero_set
cdef bitset_t positions_to_bitset(int positions[64], int length): # BITSET_SIZE
cdef bitset_t tmp = BITSET_EMPTY
cdef int i
for i from 0<=i<length:
# print positions[i], " "
tmp = bitset_set(tmp, positions[i])
# print "\n"
return tmp
cdef bitset_t binary_digits_to_bitset(digits, int length):
cdef bitset_t tmp = BITSET_EMPTY
cdef int i
for i from 0<=i<length:
if digits[i] != 0:
tmp = bitset_set(tmp, i)
return tmp
cdef inline bint earlier( bitset_t tuple1, bitset_t tuple2, int n):
cdef int i
for i from 1 <= i < n+1:
if bitset_check(tuple1,n-i) < bitset_check(tuple2,n-i):
# verbose("%s < %s"%([bitset_check(tuple1,i) for i in xrange(n)], [bitset_check(tuple2,i) for i in xrange(n)]))
return True
if bitset_check(tuple1,n-i) > bitset_check(tuple2,n-i):
# verbose("%s > %s"%([bitset_check(tuple1,i) for i in xrange(n)], [bitset_check(tuple2,i) for i in xrange(n)]))
return False
# verbose("%s = %s"%([bitset_check(tuple1,i) for i in xrange(n)], [bitset_check(tuple2,i) for i in xrange(n)]))
return False
cdef inline bitset_t permute_diag ( bitset_t d, int *p, int n):
"""
d = original diag
p = permutation list (which is [i%n for i in (~p).list])
returns the permuted diagonal
"""
cdef int i
cdef bitset_t dp = BITSET_EMPTY
if bitset_check(d, p[n-1]):
dp = bitset_set(dp,0)
for i from 1<=i<n:
if bitset_check(d, p[i-1]):
dp = bitset_set(dp, i)
return dp
cpdef zero_forcing_set_bruteforce_cython_connected(graph, int upper_bound=-1):
cdef int n=len(graph.vertices())
cdef int comb[64] # BITSET_SIZE
cdef bitset_t adjacency[64] # BITSET_SIZE
cdef bitset_t diag
cdef int i, j, k
cdef bitset_t result
cdef int mindegree
cdef int zero_degree_vertices
# We assume that the graph is connected and that
# the size of the graph is <= BITSET_SIZE
if n > BITSET_SIZE:
raise ValueError, "Graph is too large; maximum size is %s"%BITSET_SIZE
if set(graph.vertices())!=set(xrange(n)):
raise ValueError, "Graph vertices must be labeled 0 through n-1; use the graph.relabel() command"
if n == 1:
return 1, [0], 0, 0, 1
for i from 0<=i<n:
adjacency[i] = binary_digits_to_bitset(graph.am().row(i), n)
for i from n<=i<BITSET_SIZE:
adjacency[i] = BITSET_EMPTY
if upper_bound == -1:
upper_bound = n-1
# START permutation code
cdef int saved = 0
cdef bint done
cdef bitset_t diag_perm # BITSET_SIZE
# For the shortcutting, we need to be able to test if some legal permutation
# has been seen before. So if an automorphism of the graph takes vertex 1 to 3 to 2
# I.e., the permutation (1,3,2) is an automorphism
# and we have the diagonal (0,1,1), then that is equivalent to (1,1,0), which has already
# been taken care of before. We can see it in this case by taking the list
# representation of (1,3,2) (namely,
# We want to compare the last element of the permuted diag with the original diag
# Then the second-to-last element, etc.
gp = graph.automorphism_group()
# Get the generators
gens = set(gp.gens())
# and the inverses of the generators
gens.update(set([~p for p in gens]))
# Get more of the group by taking products of generators
gens.update(set([x*y*z for x in gens for y in gens for z in gens]))
# We really want ~p, but since we have all elements and their inverses
# it makes no difference if we ask for p.list() or (~p).list()
perm_p = [p.domain() for p in gens]
verbose("%s"%perm_p)
cdef int perms[128][32]
cdef int num_perms = min(128, len(perm_p))
for i from 0<=i<num_perms:
for k from 0<=k<n:
try:
perms[i][k] = perm_p[i][k]
except IndexError:
perms[i][k] = (k+1) % n
print "%d permutations"%num_perms
mindegree=min(graph.degree())
print "Min degree is %d, so starting from there"%mindegree
for k from mindegree <= k <= upper_bound:
print "Investigating subsets of size %s"%k
# Some code to generate all combinations of n things
# taken k at a time
# initialize
for i from 0<=i<k:
comb[i]=i
diag = positions_to_bitset(comb,k)
# verbose("Trying %s"%[bitset_check(diag,i) for i in xrange(n)])
# Check to see if we've seen this diag before
done=0
for p_i from 0<=p_i<num_perms:
diag_perm = permute_diag(diag, perms[p_i], n)
if earlier(diag_perm, diag,n):
# verbose("%s -> %s by %s"%([bitset_check(diag,i) for i in xrange(n)],
# [bitset_check(diag_perm,i) for i in xrange(n)],
# [perms[p_i][i] for i in xrange(n)]))
done=1
break
if done:
saved +=1
else:
# diag[j] contains the bit for the jth vertex
result=zeros_game(adjacency, diag)
# verbose("%s gives %s"%([bitset_check(diag,i) for i in xrange(n)], [bitset_check(result,i) for i in xrange(n)]))
if result == bitset_full(n):
return k,[comb[j] for j in xrange(k)], saved, num_perms, result
while 1:
i = k-1
comb[i] += 1
while i>=0 and comb[i]>=n-k+1+i:
i -= 1
comb[i] += 1
if comb[0] > n-k:
break
for j from i+1<=j<k:
comb[j]=comb[j-1]+1
diag = positions_to_bitset(comb,k)
# verbose("Trying %s"%[bitset_check(diag,i) for i in xrange(n)])
# Check to see if we've seen this diag before
done=0
for p_i from 0<=p_i<num_perms:
diag_perm = permute_diag(diag, perms[p_i], n)
if earlier(diag_perm, diag,n):
# verbose("%s -> %s by %s"%([bitset_check(diag,i) for i in xrange(n)],
# [bitset_check(diag_perm,i) for i in xrange(n)],
# [perms[p_i][i] for i in xrange(n)]))
done=1
break
if done:
saved +=1
else:
# diag[j] contains the bit for the jth vertex
result=zeros_game(adjacency, diag)
# verbose("%s gives %s"%([bitset_check(diag,i) for i in xrange(n)], [bitset_check(result,i) for i in xrange(n)]))
if result == bitset_full(n):
return k,[comb[j] for j in xrange(k)], saved, num_perms, result
# if saved%10000==0:
# print "Saved %d"%saved
return False
cpdef zero_forcing_set_bruteforce_cython(graph, upper_bound=-1):
graph = graph.copy()
relabeling = graph.relabel(return_map=True)
labeling = dict([(v,k) for k,v in relabeling.iteritems()])
connected_components = graph.connected_components_subgraphs()
n = graph.order()
if upper_bound == -1:
upper_bound = n-1
current_zfs = []
num_perms = 0
saved_calculations = 0
for g in connected_components:
size, zfs, saved, perms, _ = zero_forcing_set_bruteforce_cython_connected(g, upper_bound - len(current_zfs))
if zfs:
current_zfs.extend([labeling[i] for i in zfs])
saved_calculations += saved
num_perms += perms
else:
return False
return len(current_zfs), current_zfs, saved_calculations, num_perms
# zfs_size, zfs_set, saved_calculations, num_automorphisms = zero_forcing_set_bruteforce_cython(g)
# print "\nZFS minimum size is %d, given by the set:\n %s\n%d calculations were skipped using %d automorphisms of the graph."%(zfs_size, zfs_set, saved_calculations, num_automorphisms)
#min_ranks = [(1,0), (2,0), (3,1), (4,0), (5,1), (6,2), (7,1), (8,0), (9,1), (10,2), (11,2), (12,1), (13,2), (14,3), (15,2), (16,2),(17,2), (18,1), (19,0), (20,1), (21,2), (22,2), (23,1), (24,2), (25,3), (26,3), (27,2), (28,2), (29,2), (30,3), (31,4), (32,2), (33,2), (34,3),(35,3), (36,3), (37,3), (38,3), (39,1), (40,3), (41,3), (42,2), (43,3), (44,2), (45,2), (46,2), (47,3), (48,2), (49,2), (50,2), (51,2), (52,1), (53,0), (54,1), (55,2), (56,2), (57,1), (58,2), (59,3), (60,3), (61,3), (62,2), (63,2), (64,2), (65,3), (66,4), (67,2), (68,3), (69,4), (70,4),(71,2), (72,3), (73,3), (74,3), (75,3), (76,3), (77,2), (78,3), (79,4), (80,4), (81,4), (82,3), (83,5), (84,3), (85,3), (86,1), (87,3), (88,3),(89,2), (90,3), (91,2), (92,3), (93,4), (94,4), (95,4), (96,4), (97,4), (98,4), (99,4), (100,3), (101,3), (102,4), (103,4), (104,4), (105,4),(106,2), (107,2), (108,2), (109,3), (110,2), (111,4), (112,4), (113,4), (114,3), (115,4), (116,2), (117,3), (118,4), (119,3), (120,4), (121,3),(122,4), (123,4), (124,4), (125,3), (126,3), (127,4), (128,4), (129,3), (130,3), (131,2), (132,2), (133,3), (134,3), (135,3), (136,4), (137,4),(138,3), (139,4), (140,3), (141,3), (142,3), (143,3), (144,3), (145,3), (146,2), (147,4), (148,4), (149,3), (150,3), (151,3), (152,4), (153,3),(154,3), (155,2), (156,3), (157,3), (158,3), (159,3), (160,3), (161,2), (162,3), (163,3), (164,4), (165,2), (166,3), (167,4), (168,3), (169,3),(170,3), (171,3), (172,3), (173,3), (174,3), (175,2), (176,1), (177,3), (178,3), (179,3), (180,3), (181,3), (182,3), (183,3), (184,3), (185,3),(186,3), (187,3), (188,3), (189,2), (190,2), (191,2), (192,3), (193,3), (194,2), (195,2), (196,3), (197,2), (198,3), (199,2), (200,2), (201,2),(202,3), (203,2), (204,2), (205,2), (206,2), (207,2), (208,1), (209,0), (210,1), (211,2), (212,2), (213,1), (214,2), (215,3), (216,3), (217,3),(218,2), (219,2), (220,2), (221,3), (222,4), (223,2), (224,3), (225,4), (226,4), (227,4), (228,2), (229,3), (230,3), (231,3), (232,3), (233,3),(234,2), (235,3), (236,4), (237,4), (238,4), (239,3), (240,5), (241,3), (242,3), (243,3), (244,4), (245,4), (246,5), (247,5), (248,3), (249,1),(250,3), (251,3), (252,2), (253,3), (254,2), (255,3), (256,4), (257,4), (258,4), (259,4), (260,4), (261,4), (262,3), (263,4), (264,3), (265,4),(266,4), (267,4), (268,4), (269,2), (270,2), (271,3), (272,4), (273,4), (274,4), (275,4), (276,5), (277,4), (278,4), (279,5), (280,5), (281,4),(282,4), (283,4), (284,5), (285,3), (286,6), (287,4), (288,4), (289,4), (290,2), (291,2), (292,3), (293,2), (294,4), (295,4), (296,4), (297,3),(298,4), (299,2), (300,3), (301,4), (302,3), (303,4), (304,3), (305,4), (306,4), (307,4), (308,3), (309,3), (310,4), (311,3), (312,4), (313,3), (314,3), (315,4), (316,4), (317,5), (318,4), (319,4), (320,5), (321,5), (322,5), (323,4), (324,4), (325,4), (326,3), (327,5), (328,5), (329,4),(330,4), (331,5), (332,5), (333,5), (334,5), (335,3), (336,5), (337,5), (338,5), (339,4), (340,5), (341,5), (342,5), (343,4), (344,4), (345,4),(346,4), (347,3), (348,5), (349,5), (350,5), (351,5), (352,3), (353,5), (354,3), (355,2), (356,2), (357,3), (358,3), (359,3), (360,4), (361,4),(362,3), (363,4), (364,3), (365,3), (366,3), (367,3), (368,3), (369,3), (370,2), (371,4), (372,4), (373,3), (374,3), (375,3), (376,3), (377,4),(378,3), (379,4), (380,4), (381,5), (382,3), (383,5), (384,4), (385,5), (386,4), (387,3), (388,4), (389,4), (390,5), (391,5), (392,4), (393,5),(394,5), (395,4), (396,4), (397,3), (398,5), (399,5), (400,5), (401,5), (402,5), (403,4), (404,4), (405,4), (406,4), (407,4), (408,4), (409,4),(410,4), (411,4), (412,5), (413,5), (414,5), (415,4), (416,4), (417,3), (418,3), (419,4), (420,4), (421,5), (422,5), (423,5), (424,4), (425,4), (426,4), (427,5), (428,4), (429,4), (430,4), (431,4), (432,5), (433,5), (434,5), (435,5), (436,4), (437,5), (438,5), (439,5), (440,4), (441,4),(442,4), (443,4), (444,4), (445,5), (446,5), (447,4), (448,4), (449,4), (450,4), (451,3), (452,2), (453,3), (454,3), (455,3), (456,3), (457,3),(458,2), (459,3), (460,3), (461,4), (462,2), (463,3), (464,4), (465,3), (466,3), (467,3), (468,3), (469,3), (470,3), (471,3), (472,2), (473,3),(474,4), (475,4), (476,4), (477,4), (478,5), (479,5), (480,4), (481,4), (482,5), (483,4), (484,5), (485,4), (486,4), (487,4), (488,5), (489,5),(490,4), (491,4), (492,4), (493,4), (494,4), (495,4), (496,3), (497,5), (498,4), (499,4), (500,4), (501,3), (502,3), (503,4), (504,4), (505,4),(506,4), (507,3), (508,5), (509,5), (510,4), (511,4), (512,5), (513,4), (514,4), (515,5), (516,5), (517,5), (518,5), (519,4), (520,4), (521,4),(522,4), (523,4), (524,4), (525,3), (526,5), (527,5), (528,5), (529,5), (530,5), (531,4), (532,4), (533,5), (534,4), (535,4), (536,4), (537,4), (538,4), (539,4), (540,4), (541,4), (542,4), (543,4), (544,4), (545,4), (546,4), (547,4), (548,5), (549,4), (550,4), (551,3), (552,4), (553,4),(554,3), (555,4), (556,4), (557,3), (558,3), (559,5), (560,4), (561,5), (562,4), (563,5), (564,4), (565,4), (566,5), (567,4), (568,4), (569,4),(570,3), (571,4), (572,4), (573,4), (574,5), (575,5), (576,4), (577,4), (578,4), (579,4), (580,4), (581,4), (582,2), (583,1), (584,3), (585,3),(586,3), (587,3), (588,3), (589,3), (590,3), (591,3), (592,3), (593,3), (594,3), (595,3), (596,2), (597,2), (598,4), (599,4), (600,4), (601,4),(602,4), (603,4), (604,4), (605,4), (606,4), (607,4), (608,4), (609,4), (610,3), (611,3), (612,3), (613,4), (614,4), (615,3), (616,4), (617,4),(618,5), (619,3), (620,4), (621,4), (622,5), (623,5), (624,4), (625,4), (626,4), (627,4), (628,4), (629,4), (630,3), (631,4), (632,5), (633,4),(634,4), (635,4), (636,4), (637,4), (638,4), (639,4), (640,5), (641,4), (642,4), (643,4), (644,3), (645,4), (646,5), (647,4), (648,4), (649,4),(650,4), (651,4), (652,4), (653,4), (654,4), (655,4), (656,4), (657,4), (658,4), (659,4), (660,4), (661,4), (662,4), (663,4), (664,4), (665,4),(666,4), (667,3), (668,3), (669,3), (670,2), (671,4), (672,4), (673,4), (674,4), (675,4), (676,4), (677,4), (678,3), (679,4), (680,4), (681,3),(682,5), (683,5), (684,4), (685,4), (686,3), (687,3), (688,4), (689,3), (690,5), (691,4), (692,4), (693,4), (694,5), (695,4), (696,4), (697,4),(698,4), (699,4), (700,4), (701,4), (702,4), (703,4), (704,4), (705,4), (706,4), (707,4), (708,4), (709,4), (710,5), (711,4), (712,4), (713,4),(714,4), (715,4), (716,4), (717,4), (718,4), (719,4), (720,4), (721,3), (722,4), (723,4), (724,4), (725,3), (726,3), (727,4), (728,4), (729,4),(730,3), (731,2), (732,3), (733,3), (734,2), (735,2), (736,3), (737,2), (738,3), (739,2), (740,4), (741,4), (742,4), (743,3), (744,4), (745,2),(746,4), (747,4), (748,4), (749,4), (750,4), (751,4), (752,4), (753,4), (754,4), (755,4), (756,4), (757,4), (758,4), (759,4), (760,4), (761,4), (762,4), (763,4), (764,4), (765,4), (766,4), (767,4), (768,4), (769,4), (770,4), (771,4), (772,4), (773,4), (774,4), (775,4), (776,4), (777,4),(778,4), (779,4), (780,3), (781,3), (782,4), (783,4), (784,4), (785,4), (786,3), (787,3), (788,4), (789,3), (790,2), (791,3), (792,4), (793,4),(794,4), (795,4), (796,3), (797,4), (798,4), (799,4), (800,4), (801,3), (802,4), (803,4), (804,4), (805,4), (806,4), (807,4), (808,4), (809,3),(810,4), (811,4), (812,3), (813,5), (814,3), (815,3), (816,4), (817,4), (818,4), (819,4), (820,4), (821,5), (822,4), (823,4), (824,4), (825,4),(826,4), (827,4), (828,4), (829,3), (830,4), (831,3), (832,3), (833,4), (834,4), (835,4), (836,4), (837,4), (838,4), (839,4), (840,5), (841,4),(842,4), (843,4), (844,4), (845,4), (846,3), (847,4), (848,4), (849,4), (850,4), (851,3), (852,4), (853,4), (854,4), (855,4), (856,3), (857,4),(858,4), (859,4), (860,4), (861,4), (862,4), (863,3), (864,4), (865,3), (866,4), (867,4), (868,4), (869,3), (870,4), (871,4), (872,3), (873,3), (874,3), (875,4), (876,3), (877,4), (878,3), (879,2), (880,2), (881,3), (882,2), (883,2), (884,3), (885,3), (886,4), (887,4), (888,4), (889,4),(890,4), (891,4), (892,4), (893,3), (894,3), (895,3), (896,3), (897,4), (898,3), (899,4), (900,4), (901,3), (902,3), (903,4), (904,4), (905,4),(906,3), (907,4), (908,4), (909,3), (910,4), (911,3), (912,3), (913,3), (914,4), (915,4), (916,4), (917,4), (918,3), (919,4), (920,4), (921,4),(922,4), (923,4), (924,3), (925,3), (926,4), (927,4), (928,4), (929,4), (930,4), (931,3), (932,3), (933,4), (934,4), (935,4), (936,4), (937,4),(938,4), (939,4), (940,4), (941,4), (942,4), (943,4), (944,3), (945,3), (946,4), (947,3), (948,3), (949,3), (950,4), (951,4), (952,4), (953,3),(954,4), (955,4), (956,3), (957,3), (958,3), (959,4), (960,4), (961,4), (962,4), (963,4), (964,4), (965,4), (966,4), (967,4), (968,4), (969,4),(970,3), (971,4), (972,4), (973,3), (974,4), (975,3), (976,4), (977,3), (978,3), (979,4), (980,4), (981,4), (982,4), (983,3), (984,3), (985,4), (986,4), (987,3), (988,3), (989,4), (990,3), (991,3), (992,4), (993,4), (994,3), (995,3), (996,3), (997,4), (998,4), (999,4), (1000,3), (1001,3),(1002,3), (1003,3), (1004,3), (1005,3), (1006,4), (1007,2), (1008,4), (1009,2), (1010,2), (1011,2), (1012,3), (1013,3), (1014,3), (1015,4),(1016,4), (1017,3), (1018,3), (1019,3), (1020,3), (1021,4), (1022,3), (1023,3), (1024,3), (1025,4), (1026,4), (1027,4), (1028,3), (1029,4),(1030,4), (1031,4), (1032,2), (1033,4), (1034,3), (1035,3), (1036,3), (1037,3), (1038,3), (1039,4), (1040,3), (1041,4), (1042,3), (1043,4),(1044,3), (1045,3), (1046,4), (1047,4), (1048,4), (1049,3), (1050,4), (1051,4), (1052,4), (1053,4), (1054,4), (1055,4), (1056,3), (1057,3),(1058,4), (1059,4), (1060,3), (1061,4), (1062,3), (1063,3), (1064,3), (1065,4), (1066,3), (1067,3), (1068,3), (1069,4), (1070,3), (1071,4),(1072,3), (1073,3), (1074,3), (1075,3), (1076,3), (1077,3), (1078,4), (1079,3), (1080,4), (1081,3), (1082,4), (1083,4), (1084,3), (1085,3),(1086,3), (1087,3), (1088,2), (1089,4), (1090,3), (1091,4), (1092,3), (1093,4), (1094,3), (1095,3), (1096,3), (1097,4), (1098,3), (1099,3),(1100,3), (1101,4), (1102,3), (1103,3), (1104,3), (1105,3), (1106,3), (1107,2), (1108,3), (1109,3), (1110,3), (1111,3), (1112,3), (1113,3),(1114,3), (1115,3), (1116,3), (1117,4), (1118,4), (1119,3), (1120,3), (1121,4), (1122,3), (1123,3), (1124,3), (1125,3), (1126,3), (1127,4),(1128,3), (1129,3), (1130,3), (1131,3), (1132,3), (1133,3), (1134,3), (1135,3), (1136,3), (1137,3), (1138,3), (1139,3), (1140,2), (1141,4),(1142,4), (1143,3), (1144,3), (1145,4), (1146,3), (1147,3), (1148,3), (1149,3), (1150,4), (1151,3), (1152,3), (1153,3), (1154,4), (1155,3),(1156,3), (1157,3), (1158,3), (1159,3), (1160,4), (1161,3), (1162,3), (1163,3), (1164,2), (1165,3), (1166,3), (1167,3), (1168,3), (1169,3), (1170,3), (1171,2), (1172,1), (1173,3), (1174,3), (1175,3), (1176,3), (1177,3), (1178,3), (1179,3), (1180,3), (1181,3), (1182,3), (1183,3), (1184,2), (1185,3), (1186,3), (1187,4), (1188,2), (1189,3), (1190,4), (1191,3), (1192,3), (1193,3), (1194,3), (1195,3), (1196,3), (1197,3), (1198,3), (1199,3), (1200,3), (1201,3), (1202,3), (1203,3), (1204,3), (1205,3), (1206,2), (1207,3), (1208,2), (1209,3), (1210,3), (1211,2), (1212,3), (1213,2), (1214,3), (1215,3), (1216,2), (1217,3), (1218,3), (1219,3), (1220,3), (1221,3), (1222,3), (1223,3), (1224,3), (1225,3), (1226,2), (1227,3), (1228,3), (1229,2), (1230,2), (1231,3), (1232,3), (1233,2), (1234,2), (1235,3), (1236,3), (1237,2), (1238,2), (1239,3), (1240,2), (1241,3), (1242,2), (1243,2), (1244,2), (1245,2), (1246,3), (1247,2), (1248,2), (1249,2), (1250,2), (1251,2), (1252,1)]
# import networkx.generators.atlas
# atlas_graphs = [Graph(i) for i in networkx.generators.atlas.graph_atlas_g()]
# from sage.combinat.subset import Subsets
# def Test():
# looks_good = True
# print "Testing to ensure that our new zero forcing function's results are indeed below all minimum ranks found before..."
# atlas_graphs = [Graph(i) for i in networkx.generators.atlas.graph_atlas_g()]
# for i,k in min_ranks:
# if (len(atlas_graphs[i].vertices()) - zero_forcing_set(atlas_graphs[i])[0]) > k:
# print "Utoh at atlas graph: " , i
# print "Zero forcing set length should be less than or equal to ", k, " but is instead ", zero_forcing_set(atlas_graphs[i],False)
# looks_good = False
# if(looks_good):
# print "Passed first test"
# if not looks_good:
# print "Failed first test"
# looks_good = True
# print "Testing to see if our our new zero forcing function's results are the exactly the same as the proven old zero forcing set function's results..."
# for i in range(1,1252):
# if zero_forcing_set(atlas_graphs[i])[0]!=len(find_zero_forcing_set(atlas_graphs[i])):
# looks_good = False;
# print " Something is wrong at ", i
# print " New zfs is ",zero_forcing_set(atlas_graphs[i],False)
# print " Old zfs is ",find_zero_forcing_set(atlas_graphs[i])
# if(looks_good):
# print "Passed second test"
# if not looks_good:
# print "Failed second test"