-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
56 lines (42 loc) · 1.74 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import argparse
import logging
import subprocess
import tensorflow as tf
def get_argument_parser(description=None):
parser = argparse.ArgumentParser(description)
parser.add_argument("-m", "--model_dir", type=str, required=True,
help="The directory for a trained model is saved.")
parser.add_argument("-c", "--conf", dest="configs", default=[], nargs="*",
help="A list of configuration items. "
"An item is a file path or a 'key=value' formatted string. "
"The type of a value is determined by applying int(), float(), and str() "
"to it sequencially.")
return parser
def parse_args(description=None):
parser = get_argument_parser(description)
args = parser.parse_args()
return args
def check_git_hash(model_dir):
source_dir = os.path.dirname(os.path.realpath(__file__))
if not os.path.exists(os.path.join(source_dir, ".git")):
tf.logging.warn("{} is not a git repository, therefore hash value comparison will be ignored.")
return
cur_hash = subprocess.getoutput("git rev-parse HEAD")
path = os.path.join(model_dir, "githash")
if os.path.exists(path):
saved_hash = open(path).read()
if saved_hash != cur_hash:
tf.logging.warn("git hash values are different. {}(saved) != {}(current)".format(
saved_hash[:8], cur_hash[:8]))
else:
open(path, "w").write(cur_hash)
def redirect_log_to_file(model_dir, filename="train.log"):
logger = logging.getLogger("tensorflow")
formatter = logging.Formatter("%(asctime)s\t%(levelname)s\t%(message)s")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
h = logging.FileHandler(os.path.join(model_dir, "train.log"))
h.setLevel(logging.DEBUG)
h.setFormatter(formatter)
logger.addHandler(h)