forked from stanfordnmbl/opencap-core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
170 lines (147 loc) · 7.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import requests
import time
import json
import os
import shutil
from utilsServer import processTrial, runTestSession
import traceback
import logging
import glob
import numpy as np
from utilsAPI import getAPIURL, getWorkerType, getASInstance, unprotect_current_instance, get_number_of_pending_trials
from utilsAuth import getToken
from utils import (getDataDirectory, checkTime, checkResourceUsage,
sendStatusEmail, checkForTrialsWithStatus)
logging.basicConfig(level=logging.INFO)
API_TOKEN = getToken()
API_URL = getAPIURL()
workerType = getWorkerType()
autoScalingInstance = getASInstance()
logging.info(f"AUTOSCALING TEST INSTANCE: {autoScalingInstance}")
# if true, will delete entire data directory when finished with a trial
isDocker = True
# get start time
initialStatusCheck = False
t = time.localtime()
# For removing AWS machine scale-in protection
t_lastTrial = time.localtime()
justProcessed = True
with_on_prem = True
minutesBeforeRemoveScaleInProtection = 2
max_on_prem_pending_trials = 5
while True:
# Run test trial at a given frequency to check status of machine. Stop machine if fails.
if checkTime(t,minutesElapsed=30) or not initialStatusCheck:
runTestSession(isDocker=isDocker)
t = time.localtime()
initialStatusCheck = True
# When using autoscaling, if there are on-prem workers, then we will remove
# the instance scale-in protection if the number of pending trials is below
# a threshold so that the on-prem workers are prioritized.
if with_on_prem:
# Query the number of pending trials
if autoScalingInstance:
pending_trials = get_number_of_pending_trials()
logging.info(f"Number of pending trials: {pending_trials}")
if pending_trials < max_on_prem_pending_trials:
# Remove scale-in protection and sleep in the cycle so that the
# asg will remove that instance from the group.
logging.info("Removing scale-in protection (out loop).")
unprotect_current_instance()
logging.info("Removed scale-in protection (out loop).")
for i in range(3600):
time.sleep(1)
# workerType = 'calibration' -> just processes calibration and neutral
# workerType = 'all' -> processes all types of trials
# no query string -> defaults to 'all'
queue_path = "trials/dequeue/?workerType=" + workerType
try:
r = requests.get("{}{}".format(API_URL, queue_path),
headers = {"Authorization": "Token {}".format(API_TOKEN)})
except Exception as e:
traceback.print_exc()
time.sleep(15)
continue
if r.status_code == 404:
logging.info("...pulling " + workerType + " trials.")
time.sleep(1)
# When using autoscaling, we will remove the instance scale-in protection if it hasn't
# pulled a trial recently and there are no actively recording trials
if (autoScalingInstance and not justProcessed and
checkTime(t_lastTrial, minutesElapsed=minutesBeforeRemoveScaleInProtection)):
if checkForTrialsWithStatus('recording', hours=2/60) == 0:
# Remove scale-in protection and sleep in the cycle so that the
# asg will remove that instance from the group.
logging.info("Removing scale-in protection (in loop).")
unprotect_current_instance()
logging.info("Removed scale-in protection (in loop).")
for i in range(3600):
time.sleep(1)
else:
t_lastTrial = time.localtime()
# If a trial was just processed, reset the timer.
if autoScalingInstance and justProcessed:
justProcessed = False
t_lastTrial = time.localtime()
continue
if np.floor(r.status_code/100) == 5: # 5xx codes are server faults
logging.info("API unresponsive. Status code = {:.0f}.".format(r.status_code))
time.sleep(5)
continue
# Check resource usage
resourceUsage = checkResourceUsage(stop_machine_and_email=True)
logging.info(json.dumps(resourceUsage))
logging.info(r.text)
trial = r.json()
trial_url = "{}{}{}/".format(API_URL, "trials/", trial["id"])
logging.info(trial_url)
logging.info(trial)
if len(trial["videos"]) == 0:
error_msg = {}
error_msg['error_msg'] = 'No videos uploaded. Ensure phones are connected and you have stable internet connection.'
error_msg['error_msg_dev'] = 'No videos uploaded.'
r = requests.patch(trial_url, data={"status": "error", "meta": json.dumps(error_msg)},
headers = {"Authorization": "Token {}".format(API_TOKEN)})
continue
# The following is now done in main, to allow reprocessing trials with missing videos
# if any([v["video"] is None for v in trial["videos"]]):
# r = requests.patch(trial_url, data={"status": "error"},
# headers = {"Authorization": "Token {}".format(API_TOKEN)})
# continue
trial_type = "dynamic"
if trial["name"] == "calibration":
trial_type = "calibration"
if trial["name"] == "neutral":
trial["name"] = "static"
trial_type = "static"
logging.info("processTrial({},{},trial_type={})".format(trial["session"], trial["id"], trial_type))
try:
# trigger reset of timer for last processed trial
processTrial(trial["session"], trial["id"], trial_type=trial_type, isDocker=isDocker)
# note a result needs to be posted for the API to know we finished, but we are posting them
# automatically thru procesTrial now
r = requests.patch(trial_url, data={"status": "done"},
headers = {"Authorization": "Token {}".format(API_TOKEN)})
logging.info('0.5s pause if need to restart.')
time.sleep(0.5)
except Exception as e:
r = requests.patch(trial_url, data={"status": "error"},
headers = {"Authorization": "Token {}".format(API_TOKEN)})
traceback.print_exc()
# Antoine: Removing this, it is too often causing the machines to stop. Not because
# the machines are failing, but because for instance the video is very long with a lot
# of people in it. We should not stop the machine for that. Originally the check was
# to catch a bug where the machine would hang, I have not seen this bug in a long time.
# args_as_strings = [str(arg) for arg in e.args]
# if len(args_as_strings) > 1 and 'pose detection timed out' in args_as_strings[1].lower():
# logging.info("Worker failed. Stopping machine.")
# message = "A backend OpenCap machine timed out during pose detection. It has been stopped."
# sendStatusEmail(message=message)
# raise Exception('Worker failed. Stopped.')
justProcessed = True
# Clean data directory
if isDocker:
folders = glob.glob(os.path.join(getDataDirectory(isDocker=True),'Data','*'))
for f in folders:
shutil.rmtree(f)
logging.info('deleting ' + f)