forked from stanfordnmbl/opencap-core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilsDetector.py
455 lines (377 loc) · 19.9 KB
/
utilsDetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import os
import cv2
import shutil
import pickle
import numpy as np
import json
import sys
import time
from decouple import config
from utils import getOpenPoseMarkerNames, getMMposeMarkerNames, getVideoExtension
from utilsChecker import getVideoRotation
# %%
def runPoseDetector(CameraDirectories, trialRelativePath, pathPoseDetector,
trialName,
CamParamDict=None, resolutionPoseDetection='default',
generateVideo=True, cams2Use=['all'],
poseDetector='OpenPose', bbox_thr=0.8):
# Create list of cameras.
if cams2Use[0] == 'all':
cameras2Use = list(CameraDirectories.keys())
else:
cameras2Use = cams2Use
CameraDirectories_selectedCams = {}
CamParamList_selectedCams = []
for cam in cameras2Use:
CameraDirectories_selectedCams[cam] = CameraDirectories[cam]
CamParamList_selectedCams.append(CamParamDict[cam])
# Get/add video extension.
cameraDirectory = CameraDirectories_selectedCams[cameras2Use[0]]
pathVideoWithoutExtension = os.path.join(cameraDirectory,
trialRelativePath)
extension = getVideoExtension(pathVideoWithoutExtension)
trialRelativePath += extension
for camName in CameraDirectories_selectedCams:
cameraDirectory = CameraDirectories_selectedCams[camName]
print('Running {} for {}'.format(poseDetector, camName))
if poseDetector == 'OpenPose':
runOpenPoseVideo(
cameraDirectory,trialRelativePath,pathPoseDetector, trialName,
resolutionPoseDetection=resolutionPoseDetection,
generateVideo=generateVideo)
elif poseDetector == 'mmpose':
runMMposeVideo(
cameraDirectory,trialRelativePath,pathPoseDetector, trialName,
generateVideo=generateVideo, bbox_thr=bbox_thr)
return extension
# %%
def runOpenPoseVideo(cameraDirectory,fileName,pathOpenPose, trialName,
resolutionPoseDetection='default', generateVideo=True):
trialPrefix, _ = os.path.splitext(os.path.basename(fileName))
videoFullPath = os.path.normpath(os.path.join(cameraDirectory, fileName))
if not os.path.exists(videoFullPath):
exception = "Video upload failed. Make sure all devices are connected to Internet and that your connection is stable."
raise Exception(exception, exception)
outputMediaFolder = "OutputMedia_" + resolutionPoseDetection
outputJsonFolder = "OutputJsons_" + resolutionPoseDetection
outputPklFolder = "OutputPkl_" + resolutionPoseDetection
pathOutputVideo = os.path.join(cameraDirectory, outputMediaFolder,
trialName)
openposeJsonDir = os.path.join(outputJsonFolder, trialName)
pathOutputJsons = os.path.join(cameraDirectory, openposeJsonDir)
pathJsonDir = os.path.join(cameraDirectory, outputJsonFolder)
openposePklDir = os.path.join(outputPklFolder, trialName)
pathOutputPkl = os.path.join(cameraDirectory, openposePklDir)
os.makedirs(pathOutputVideo, exist_ok=True)
os.makedirs(pathOutputJsons, exist_ok=True)
os.makedirs(pathOutputPkl, exist_ok=True)
# Get number of frames.
thisVideo = cv2.VideoCapture(videoFullPath)
nFrameIn = int(thisVideo.get(cv2.CAP_PROP_FRAME_COUNT))
# The video is rewritten, unrotated, and downsampled. There is no
# need to do anything specific for the rotation, just rewriting the video
# unrotates it.
trialPath, _ = os.path.splitext(fileName)
fileName = trialPath + "_rotated.avi"
pathVideoRot = os.path.normpath(os.path.join(cameraDirectory, fileName))
cmd_fr = ' '
# frameRate = np.round(thisVideo.get(cv2.CAP_PROP_FPS))
# if frameRate > 60.0: # previously downsampled for efficiency
# cmd_fr = ' -r 60 '
# frameRate = 60.0
CMD = "ffmpeg -loglevel error -y -i {}{}-q 0 {}".format(
videoFullPath, cmd_fr, pathVideoRot)
videoFullPath = pathVideoRot
trialPrefix = trialPrefix + "_rotated"
if not os.path.exists(pathVideoRot):
os.system(CMD)
# Run OpenPose if this file doesn't exist in outputs
ppPklPath = os.path.join(pathOutputPkl, trialPrefix + '_pp.pkl')
if not os.path.exists(ppPklPath):
c_path = os.getcwd()
command = runOpenPoseCMD(
pathOpenPose, resolutionPoseDetection, cameraDirectory,
fileName, openposeJsonDir, pathOutputVideo, trialPrefix,
generateVideo, videoFullPath, pathOutputJsons)
if not pathOpenPose == "docker":
os.chdir(c_path)
# Get number of frames output video. We count the number of jsons, as
# videos are not written on server.
nFrameOut = len([f for f in os.listdir(pathOutputJsons)
if f.endswith('.json')])
# At high resolution, sometimes OpenPose does not process the full
# video, let's check here and try max 5 times. If still bad, then raise
# an exception.
checknFrames = False
if not resolutionPoseDetection == 'default' and checknFrames:
countFrames = 0
while nFrameIn != nFrameOut:
# Need to get command again, as there is os.chdir(pathOpenPose)
# in the function.
command = runOpenPoseCMD(pathOpenPose, resolutionPoseDetection,
cameraDirectory, fileName,
openposeJsonDir, pathOutputVideo,
trialPrefix, generateVideo,
videoFullPath, pathOutputJsons)
if not pathOpenPose == "docker":
os.chdir(c_path)
nFrameOut = len([f for f in os.listdir(pathOutputJsons)
if f.endswith('.json')])
if countFrames > 4:
print('# frames in {} - # frames out {}'.format(nFrameIn,
nFrameOut))
raise ValueError('OpenPose did not process the full video')
countFrames += 1
# Gather data from jsons in pkl file.
saveJsonsAsPkl(pathOutputJsons, ppPklPath, trialPrefix)
# Delete jsons
shutil.rmtree(pathJsonDir)
return
# %%
def runOpenPoseCMD(pathOpenPose, resolutionPoseDetection, cameraDirectory,
fileName, openposeJsonDir, pathOutputVideo, trialPrefix,
generateVideo, videoFullPath, pathOutputJsons):
rotation = getVideoRotation(videoFullPath)
if rotation in [0,180]:
horizontal = True
else:
horizontal = False
command = None
if resolutionPoseDetection == 'default':
cmd_hr = ' '
elif resolutionPoseDetection == '1x1008_4scales':
if horizontal:
cmd_hr = ' --net_resolution "1008x-1" --scale_number 4 --scale_gap 0.25 '
else:
cmd_hr = ' --net_resolution "-1x1008" --scale_number 4 --scale_gap 0.25 '
elif resolutionPoseDetection == '1x736':
if horizontal:
cmd_hr = ' --net_resolution "736x-1" '
else:
cmd_hr = ' --net_resolution "-1x736" '
elif resolutionPoseDetection == '1x736_2scales':
if horizontal:
cmd_hr = ' --net_resolution "-1x736" --scale_number 2 --scale_gap 0.75 '
else:
cmd_hr = ' --net_resolution "736x-1" --scale_number 2 --scale_gap 0.75 '
if config("DOCKERCOMPOSE", cast=bool, default=False):
vid_path_tmp = "/data/tmp-video.mov"
vid_path = "/data/video_openpose.mov"
# copy the video to vid_path_tmp
shutil.copy(f"{cameraDirectory}/{fileName}", vid_path_tmp)
# rename the video to vid_path
os.rename(vid_path_tmp, vid_path)
try:
# wait until the video is processed (i.e. until the video is removed -- then json should be ready)
start = time.time()
while True:
if not os.path.isfile(vid_path):
break
if start + 60*60 < time.time():
raise Exception("Pose detection timed out. This is unlikely to be your fault, please report this issue on the forum. You can proceed with your data collection (videos are uploaded to the server) and later reprocess errored trials.", 'timeout - openpose')
time.sleep(0.1)
# copy /data/output to openposeJsonDir
os.system("cp /data/output_openpose/* {cameraDirectory}/{openposeJsonDir}/".format(cameraDirectory=cameraDirectory, openposeJsonDir=openposeJsonDir))
except Exception as e:
if len(e.args) == 2: # specific exception
raise Exception(e.args[0], e.args[1])
elif len(e.args) == 1: # generic exception
exception = "Pose detection failed. Verify your setup and try again. Visit https://www.opencap.ai/best-pratices to learn more about data collection and https://www.opencap.ai/troubleshooting for potential causes for a failed neutral pose."
raise Exception(exception, exception)
elif pathOpenPose == "docker":
command = "docker run --gpus=1 -v {}:/openpose/data stanfordnmbl/openpose-gpu\
/openpose/build/examples/openpose/openpose.bin\
--video /openpose/data/{}\
--display 0\
--write_json /openpose/data/{}\
--render_pose 0{}".format(cameraDirectory, fileName,
openposeJsonDir, cmd_hr)
else:
os.chdir(pathOpenPose)
pathVideoOut = os.path.join(pathOutputVideo,
trialPrefix + 'withKeypoints.avi')
if not generateVideo:
command = ('bin\OpenPoseDemo.exe --video {} --write_json {} --render_threshold 0.5 --display 0 --render_pose 0{}'.format(
videoFullPath, pathOutputJsons, cmd_hr))
else:
command = ('bin\OpenPoseDemo.exe --video {} --write_json {} --render_threshold 0.5 --display 0{}--write_video {}'.format(
videoFullPath, pathOutputJsons, cmd_hr, pathVideoOut))
if command:
os.system(command)
return
# %%
def runMMposeVideo(
cameraDirectory, fileName, pathMMpose, trialName,
generateVideo=True, bbox_thr=0.8,
model_config_person='faster_rcnn_r50_fpn_coco.py',
model_ckpt_person='faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth',
model_config_pose='hrnet_w48_coco_wholebody_384x288_dark_plus.py',
model_ckpt_pose='hrnet_w48_coco_wholebody_384x288_dark-f5726563_20200918.pth',
):
trialPrefix, _ = os.path.splitext(os.path.basename(fileName))
videoFullPath = os.path.normpath(os.path.join(cameraDirectory, fileName))
pathOutputVideo = os.path.join(cameraDirectory,"OutputMedia_mmpose_" +
str(bbox_thr), trialName)
mmposeBoxDir = os.path.join("OutputBox_mmpose", trialName)
pathOutputBox = os.path.join(cameraDirectory, mmposeBoxDir)
mmposePklDir = os.path.join("OutputPkl_mmpose_" + str(bbox_thr),
trialName)
pathOutputPkl = os.path.join(cameraDirectory, mmposePklDir)
os.makedirs(pathOutputVideo, exist_ok=True)
os.makedirs(pathOutputBox, exist_ok=True)
os.makedirs(pathOutputPkl, exist_ok=True)
# Get frame rate.
thisVideo = cv2.VideoCapture(videoFullPath)
# frameRate = np.round(thisVideo.get(cv2.CAP_PROP_FPS))
# The video is rewritten, unrotated, and downsampled. There is no
# need to do anything specific for the rotation, just rewriting the video
# unrotates it.
trialPath, _ = os.path.splitext(fileName)
fileName = trialPath + "_rotated.avi"
pathVideoRot = os.path.normpath(os.path.join(cameraDirectory, fileName))
cmd_fr = ' '
# if frameRate > 60.0:
# cmd_fr = ' -r 60 '
# frameRate = 60.0
CMD = "ffmpeg -loglevel error -y -i {}{}-q 0 {}".format(
videoFullPath, cmd_fr, pathVideoRot)
videoFullPath = pathVideoRot
trialPrefix = trialPrefix + "_rotated"
if not os.path.exists(pathVideoRot):
os.system(CMD)
pklPath = os.path.join(pathOutputPkl, trialPrefix + '.pkl')
ppPklPath = os.path.join(pathOutputPkl, trialPrefix + '_pp.pkl')
# Run pose detector if this file doesn't exist in outputs
if not os.path.exists(ppPklPath):
if config("DOCKERCOMPOSE", cast=bool, default=False):
vid_path_tmp = "/data/tmp-video.mov"
vid_path = "/data/video_mmpose.mov"
# copy the video to vid_path_tmp
shutil.copy(f"{cameraDirectory}/{fileName}", vid_path_tmp)
# rename the video to vid_path
os.rename(vid_path_tmp, vid_path)
try:
# wait until the video is processed (i.e. until the video is removed -- then json should be ready)
start = time.time()
while True:
if not os.path.isfile(vid_path):
break
if start + 60*60 < time.time():
raise Exception("Pose detection timed out. This is unlikely to be your fault, please report this issue on the forum. You can proceed with your data collection (videos are uploaded to the server) and later reprocess errored trials.", 'timeout - hrnet')
time.sleep(0.1)
# copy /data/output to pathOutputPkl
os.system("cp /data/output_mmpose/* {pathOutputPkl}/".format(pathOutputPkl=pathOutputPkl))
pkl_path_tmp = os.path.join(pathOutputPkl, 'human.pkl')
os.rename(pkl_path_tmp, pklPath)
except Exception as e:
if len(e.args) == 2: # specific exception
raise Exception(e.args[0], e.args[1])
elif len(e.args) == 1: # generic exception
exception = "Pose detection failed. Verify your setup and try again. Visit https://www.opencap.ai/best-pratices to learn more about data collection and https://www.opencap.ai/troubleshooting for potential causes for a failed neutral pose."
raise Exception(exception, exception)
else:
c_path = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(c_path, 'mmpose'))
from utilsMMpose import detection_inference, pose_inference
# Run human detection.
pathModelCkptPerson = os.path.join(pathMMpose, model_ckpt_person)
bboxPath = os.path.join(pathOutputBox, trialPrefix + '.pkl')
full_model_config_person = os.path.join(c_path, 'mmpose',
model_config_person)
detection_inference(full_model_config_person, pathModelCkptPerson,
videoFullPath, bboxPath)
# Run pose detection.
pathModelCkptPose = os.path.join(pathMMpose, model_ckpt_pose)
videoOutPath = os.path.join(pathOutputVideo,
trialPrefix + 'withKeypoints.mp4')
full_model_config_pose = os.path.join(c_path, 'mmpose',
model_config_pose)
pose_inference(full_model_config_pose, pathModelCkptPose,
videoFullPath, bboxPath, pklPath, videoOutPath,
bbox_thr=bbox_thr, visualize=generateVideo)
# Post-process data to have OpenPose-like file structure.
arrangeMMposePkl(pklPath, ppPklPath)
# This is a hack to be able to use pose pickle files already saved in the
# database. In some cases, we saved pklPath instead of ppPklPath:
# https://github.com/stanfordnmbl/opencap-core/pull/100/files.
# We here identify these cases and re-run post processing.
else:
open_file = open(ppPklPath, "rb")
frames = pickle.load(open_file)
open_file.close()
isData = any([('pose_keypoints_2d' in element[0].keys()) for element in frames if len(element)>0])
if not isData:
os.rename(ppPklPath, pklPath)
arrangeMMposePkl(pklPath, ppPklPath)
# %%
def arrangeMMposePkl(poseInferencePklPath, outputPklPath):
open_file = open(poseInferencePklPath, "rb")
frames = pickle.load(open_file)
open_file.close()
markersMMpose = getMMposeMarkerNames()
markersOpenPose = getOpenPoseMarkerNames()
data4pkl = []
for c_frame, frame in enumerate(frames):
data4people = []
for c, person in enumerate(frame):
coordinates = person['preds_with_flip'].tolist()
c_coord_out = np.zeros((25*3,))
for c_m, marker in enumerate(markersOpenPose):
if marker == "midHip":
leftHip = coordinates[markersMMpose.index("LHip")]
rightHip = coordinates[markersMMpose.index("RHip")]
c_coord = []
# Mid point between both hips
c_coord.append((leftHip[0] + rightHip[0]) / 2)
c_coord.append((leftHip[1] + rightHip[1]) / 2)
# Lowest confidence
c_coord.append(np.min([leftHip[2], rightHip[2]]))
elif marker == "Neck":
leftShoulder = coordinates[
markersMMpose.index("LShoulder")]
rightShoulder = coordinates[
markersMMpose.index("RShoulder")]
c_coord = []
# Mid point between both shoulders
c_coord.append((leftShoulder[0] + rightShoulder[0]) / 2)
c_coord.append((leftShoulder[1] + rightShoulder[1]) / 2)
# Lowest confidence
c_coord.append(np.min([leftShoulder[2],
rightShoulder[2]]))
else:
c_coord = coordinates[markersMMpose.index(marker)]
idx_out = np.arange(c_m*3, c_m*3+3)
c_coord_out[idx_out,] = c_coord
c_dict = {}
c_dict['person_id'] = [c]
c_dict['pose_keypoints_2d'] = c_coord_out.tolist()
data4people.append(c_dict)
data4pkl.append(data4people)
with open(outputPklPath, 'wb') as f:
pickle.dump(data4pkl, f)
return
# %%
def saveJsonsAsPkl(json_directory, outputPklPath, videoName):
nFrames = 0
for file in os.listdir(json_directory):
if videoName + "_000" in file: # not great
nFrames += 1
data4pkl = []
for frame in sorted(os.listdir(json_directory)):
image_json = os.path.join(json_directory,frame)
if not os.path.isfile(image_json):
break
with open(image_json) as data_file:
data = json.load(data_file)
data4people = []
for person_idx in range(len(data['people'])):
person = data['people'][person_idx]
keypoints = person['pose_keypoints_2d']
c_dict = {}
c_dict['person_id'] = [person_idx]
c_dict['pose_keypoints_2d'] = keypoints
data4people.append(c_dict)
data4pkl.append(data4people)
with open(outputPklPath, 'wb') as f:
pickle.dump(data4pkl, f)
return