Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

libpng error: IDAT: CRC error Exception in thread Thread-1: TypeError: 'NoneType' object has no attribute '__getitem__' AttributeError: 'NoneType' object has no attribute 'shape' #21

Open
Jnyle opened this issue Oct 12, 2018 · 2 comments

Comments

@Jnyle
Copy link

Jnyle commented Oct 12, 2018

Firstly, my terminal outputs are like this:
libpng error: IDAT: CRC error
Exception in thread Thread-1:
Traceback (most recent call last):
File "/home/wh/anaconda2/envs/dy/lib/python2.7/threading.py", line 801, in __bootstrap_inner
self.run()
File "/home/wh/anaconda2/envs/dy/lib/python2.7/threading.py", line 754, in run
self.__target(*self.__args, **self.__kwargs)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/utils/PrefetchingIter.py", line 60, in prefetch_func
self.next_batch[i] = self.iters[i].next()
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 701, in next
self.get_batch_individual()
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 808, in get_batch_individual
rst.append(self.parfetch(iroidb))
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 816, in parfetch
data, label = get_rpn_batch_quadrangle(iroidb, self.cfg)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/rpn/rpn.py", line 91, in get_rpn_batch_quadrangle
imgs, roidb = get_image_quadrangle_bboxes(roidb, cfg)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/utils/image.py", line 61, in get_image_quadrangle_bboxes
im = im[:, ::-1, :]
TypeError: 'NoneType' object has no attribute 'getitem'

and sometimes like this:

Exception in thread Thread-1:
Traceback (most recent call last):
File "/home/wh/anaconda2/envs/dy/lib/python2.7/threading.py", line 801, in __bootstrap_inner
self.run()
File "/home/wh/anaconda2/envs/dy/lib/python2.7/threading.py", line 754, in run
self.__target(*self.__args, **self.__kwargs)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/utils/PrefetchingIter.py", line 61, in prefetch_func
self.next_batch[i] = self.iters[i].next()
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 701, in next
self.get_batch_individual()
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 808, in get_batch_individual
rst.append(self.parfetch(iroidb))
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 816, in parfetch
data, label = get_rpn_batch_quadrangle(iroidb, self.cfg)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/rpn/rpn.py", line 91, in get_rpn_batch_quadrangle
imgs, roidb = get_image_quadrangle_bboxes(roidb, cfg)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/utils/image.py", line 66, in get_image_quadrangle_bboxes
im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/utils/image.py", line 219, in resize
im_shape = im.shape
AttributeError: 'NoneType' object has no attribute 'shape'
I'm sure that my images' format is .png . And my log is as followed:
2018-10-12 20:21:08,725 training config:{'CLASS_AGNOSTIC': False,
'MXNET_VERSION': 'mxnet',
'RESIZE_TO_FIX_SIZE': True,
'SCALES': [(1024, 1024)],
'TEST': {'BATCH_IMAGES': 1,
'CXX_PROPOSAL': False,
'DO_MULTISCALE_TEST': False,
'HAS_RPN': True,
'MULTISCALE': [1.0, 1.2, 1.4, 1.6],
'NMS': 0.3,
'PROPOSAL_MIN_SIZE': 0,
'PROPOSAL_NMS_THRESH': 0.7,
'PROPOSAL_POST_NMS_TOP_N': 2000,
'PROPOSAL_PRE_NMS_TOP_N': 20000,
'RPN_MIN_SIZE': 0,
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'max_per_image': 300,
'save_img_path': '/home/wh/Faster_RCNN_for_DOTA/data/vis',
'test_epoch': 59},
'TRAIN': {'ALTERNATE': {'RCNN_BATCH_IMAGES': 0,
'RPN_BATCH_IMAGES': 0,
'rfcn1_epoch': 0,
'rfcn1_lr': 0,
'rfcn1_lr_step': '',
'rfcn2_epoch': 0,
'rfcn2_lr': 0,
'rfcn2_lr_step': '',
'rpn1_epoch': 0,
'rpn1_lr': 0,
'rpn1_lr_step': '',
'rpn2_epoch': 0,
'rpn2_lr': 0,
'rpn2_lr_step': '',
'rpn3_epoch': 0,
'rpn3_lr': 0,
'rpn3_lr_step': ''},
'ASPECT_GROUPING': True,
'BATCH_IMAGES': 1,
'BATCH_ROIS': 128,
'BATCH_ROIS_OHEM': 128,
'BBOX_MEANS': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZATION_PRECOMPUTED': False,
'BBOX_REGRESSION_THRESH': 0.5,
'BBOX_STDS': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
'BBOX_WEIGHTS': array([1., 1., 1., 1., 1., 1., 1., 1.]),
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.1,
'CXX_PROPOSAL': False,
'ENABLE_OHEM': True,
'END2END': True,
'FG_FRACTION': 0.25,
'FG_THRESH': 0.5,
'FLIP': True,
'RESUME': False,
'RPN_BATCH_SIZE': 256,
'RPN_BBOX_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_MIN_SIZE': 0,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'SHUFFLE': True,
'begin_epoch': 0,
'end_epoch': 60,
'lr': 0.0005,
'lr_factor': 0.1,
'lr_step': '45,52',
'model_prefix': 'rcnn_DOTA_quadrangle',
'momentum': 0.9,
'warmup': True,
'warmup_lr': 5e-05,
'warmup_step': 1000,
'wd': 0.0005},
'dataset': {'NUM_CLASSES': 16,
'dataset': 'DOTA_oriented',
'dataset_path': '/home/wh/Faster_RCNN_for_DOTA/data',
'image_set': 'train',
'proposal': 'rpn',
'root_path': '/home/wh/Faster_RCNN_for_DOTA/data',
'test_image_set': 'test'},
'default': {'frequent': 100, 'kvstore': 'device'},
'gpus': '0',
'network': {'ANCHOR_RATIOS': [0.5, 1, 2],
'ANCHOR_SCALES': [8, 16, 32],
'FIXED_PARAMS': ['conv1',
'bn_conv1',
'res2',
'bn2',
'gamma',
'beta'],
'FIXED_PARAMS_SHARED': ['conv1',
'bn_conv1',
'res2',
'bn2',
'res3',
'bn3',
'res4',
'bn4',
'gamma',
'beta'],
'IMAGE_STRIDE': 0,
'NUM_ANCHORS': 9,
'PIXEL_MEANS': array([103.06, 115.9 , 123.15]),
'RCNN_FEAT_STRIDE': 16,
'RPN_FEAT_STRIDE': 16,
'pretrained': './model/pretrained_model/resnet_v1_101',
'pretrained_epoch': 0},
'output_path': './output/rcnn/DOTA_quadrangle',
'symbol': 'resnet_v1_101_rcnn_quadrangle'}

2018-10-12 20:21:11,505 bucketing: data "gt_boxes" has a shape (1L, 386L, 9L), which is larger than already allocated shape (1L, 100L, 9L). Need to re-allocate. Consider putting default_bucket_key to be the bucket taking the largest input for better memory sharing.
2018-10-12 20:21:19,930 bucketing: data "gt_boxes" has a shape (1L, 597L, 9L), which is larger than already allocated shape (1L, 386L, 9L). Need to re-allocate. Consider putting default_bucket_key to be the bucket taking the largest input for better memory sharing.
2018-10-12 20:21:50,888 training config:{'CLASS_AGNOSTIC': False,
'MXNET_VERSION': 'mxnet',
'RESIZE_TO_FIX_SIZE': True,
'SCALES': [(1024, 1024)],
'TEST': {'BATCH_IMAGES': 1,
'CXX_PROPOSAL': False,
'DO_MULTISCALE_TEST': False,
'HAS_RPN': True,
'MULTISCALE': [1.0, 1.2, 1.4, 1.6],
'NMS': 0.3,
'PROPOSAL_MIN_SIZE': 0,
'PROPOSAL_NMS_THRESH': 0.7,
'PROPOSAL_POST_NMS_TOP_N': 2000,
'PROPOSAL_PRE_NMS_TOP_N': 20000,
'RPN_MIN_SIZE': 0,
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'max_per_image': 300,
'save_img_path': '/home/wh/Faster_RCNN_for_DOTA/data/vis',
'test_epoch': 59},
'TRAIN': {'ALTERNATE': {'RCNN_BATCH_IMAGES': 0,
'RPN_BATCH_IMAGES': 0,
'rfcn1_epoch': 0,
'rfcn1_lr': 0,
'rfcn1_lr_step': '',
'rfcn2_epoch': 0,
'rfcn2_lr': 0,
'rfcn2_lr_step': '',
'rpn1_epoch': 0,
'rpn1_lr': 0,
'rpn1_lr_step': '',
'rpn2_epoch': 0,
'rpn2_lr': 0,
'rpn2_lr_step': '',
'rpn3_epoch': 0,
'rpn3_lr': 0,
'rpn3_lr_step': ''},
'ASPECT_GROUPING': True,
'BATCH_IMAGES': 1,
'BATCH_ROIS': 128,
'BATCH_ROIS_OHEM': 128,
'BBOX_MEANS': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZATION_PRECOMPUTED': False,
'BBOX_REGRESSION_THRESH': 0.5,
'BBOX_STDS': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
'BBOX_WEIGHTS': array([1., 1., 1., 1., 1., 1., 1., 1.]),
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.1,
'CXX_PROPOSAL': False,
'ENABLE_OHEM': True,
'END2END': True,
'FG_FRACTION': 0.25,
'FG_THRESH': 0.5,
'FLIP': True,
'RESUME': False,
'RPN_BATCH_SIZE': 256,
'RPN_BBOX_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_MIN_SIZE': 0,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'SHUFFLE': True,
'begin_epoch': 0,
'end_epoch': 60,
'lr': 0.0005,
'lr_factor': 0.1,
'lr_step': '45,52',
'model_prefix': 'rcnn_DOTA_quadrangle',
'momentum': 0.9,
'warmup': True,
'warmup_lr': 5e-05,
'warmup_step': 1000,
'wd': 0.0005},
'dataset': {'NUM_CLASSES': 16,
'dataset': 'DOTA_oriented',
'dataset_path': '/home/wh/Faster_RCNN_for_DOTA/data',
'image_set': 'train',
'proposal': 'rpn',
'root_path': '/home/wh/Faster_RCNN_for_DOTA/data',
'test_image_set': 'test'},
'default': {'frequent': 100, 'kvstore': 'device'},
'gpus': '0',
'network': {'ANCHOR_RATIOS': [0.5, 1, 2],
'ANCHOR_SCALES': [8, 16, 32],
'FIXED_PARAMS': ['conv1',
'bn_conv1',
'res2',
'bn2',
'gamma',
'beta'],
'FIXED_PARAMS_SHARED': ['conv1',
'bn_conv1',
'res2',
'bn2',
'res3',
'bn3',
'res4',
'bn4',
'gamma',
'beta'],
'IMAGE_STRIDE': 0,
'NUM_ANCHORS': 9,
'PIXEL_MEANS': array([103.06, 115.9 , 123.15]),
'RCNN_FEAT_STRIDE': 16,
'RPN_FEAT_STRIDE': 16,
'pretrained': './model/pretrained_model/resnet_v1_101',
'pretrained_epoch': 0},
'output_path': './output/rcnn/DOTA_quadrangle',
'symbol': 'resnet_v1_101_rcnn_quadrangle'}

2018-10-12 20:21:55,379 bucketing: data "gt_boxes" has a shape (1L, 263L, 9L), which is larger than already allocated shape (1L, 100L, 9L). Need to re-allocate. Consider putting default_bucket_key to be the bucket taking the largest input for better memory sharing.
2018-10-12 20:21:56,718 bucketing: data "gt_boxes" has a shape (1L, 295L, 9L), which is larger than already allocated shape (1L, 263L, 9L). Need to re-allocate. Consider putting default_bucket_key to be the bucket taking the largest input for better memory sharing.
2018-10-12 20:22:08,772 bucketing: data "gt_boxes" has a shape (1L, 1028L, 9L), which is larger than already allocated shape (1L, 295L, 9L). Need to re-allocate. Consider putting default_bucket_key to be the bucket taking the largest input for better memory sharing.
2018-10-12 20:22:19,004 Epoch[0] Batch [100] Speed: 3.89 samples/sec Train-RPNAcc=0.838219, RPNLogLoss=0.442614, RPNL1Loss=0.823888, RCNNAcc=0.750155, RCNNLogLoss=2.288598, RCNNL1Loss=0.208822,

So, what's wrong?

@jessemelpolio
Copy link
Owner

I think the problem should lie in data processing. Have a look. It might not be the format problem. Maybe some of your images are corrupted or the image path is not pointing to an existing image. I don't quite know. I guess it should be the data problem.

@Jnyle
Copy link
Author

Jnyle commented Nov 10, 2018

There are some wrong images, but I check the other images
and find no problem and there are still the same problems when training:

TypeError: 'NoneType' object has no attribute 'getitem'

The image name was output in the screen and I check that it can be opened.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants