You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
libpng error: IDAT: CRC error Exception in thread Thread-1: TypeError: 'NoneType' object has no attribute '__getitem__' AttributeError: 'NoneType' object has no attribute 'shape'
#21
Firstly, my terminal outputs are like this:
libpng error: IDAT: CRC error
Exception in thread Thread-1:
Traceback (most recent call last):
File "/home/wh/anaconda2/envs/dy/lib/python2.7/threading.py", line 801, in __bootstrap_inner
self.run()
File "/home/wh/anaconda2/envs/dy/lib/python2.7/threading.py", line 754, in run
self.__target(*self.__args, **self.__kwargs)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/utils/PrefetchingIter.py", line 60, in prefetch_func
self.next_batch[i] = self.iters[i].next()
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 701, in next
self.get_batch_individual()
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 808, in get_batch_individual
rst.append(self.parfetch(iroidb))
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 816, in parfetch
data, label = get_rpn_batch_quadrangle(iroidb, self.cfg)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/rpn/rpn.py", line 91, in get_rpn_batch_quadrangle
imgs, roidb = get_image_quadrangle_bboxes(roidb, cfg)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/utils/image.py", line 61, in get_image_quadrangle_bboxes
im = im[:, ::-1, :]
TypeError: 'NoneType' object has no attribute 'getitem'
2018-10-12 20:21:55,379 bucketing: data "gt_boxes" has a shape (1L, 263L, 9L), which is larger than already allocated shape (1L, 100L, 9L). Need to re-allocate. Consider putting default_bucket_key to be the bucket taking the largest input for better memory sharing.
2018-10-12 20:21:56,718 bucketing: data "gt_boxes" has a shape (1L, 295L, 9L), which is larger than already allocated shape (1L, 263L, 9L). Need to re-allocate. Consider putting default_bucket_key to be the bucket taking the largest input for better memory sharing.
2018-10-12 20:22:08,772 bucketing: data "gt_boxes" has a shape (1L, 1028L, 9L), which is larger than already allocated shape (1L, 295L, 9L). Need to re-allocate. Consider putting default_bucket_key to be the bucket taking the largest input for better memory sharing.
2018-10-12 20:22:19,004 Epoch[0] Batch [100] Speed: 3.89 samples/sec Train-RPNAcc=0.838219, RPNLogLoss=0.442614, RPNL1Loss=0.823888, RCNNAcc=0.750155, RCNNLogLoss=2.288598, RCNNL1Loss=0.208822,
So, what's wrong?
The text was updated successfully, but these errors were encountered:
I think the problem should lie in data processing. Have a look. It might not be the format problem. Maybe some of your images are corrupted or the image path is not pointing to an existing image. I don't quite know. I guess it should be the data problem.
Firstly, my terminal outputs are like this:
libpng error: IDAT: CRC error
Exception in thread Thread-1:
Traceback (most recent call last):
File "/home/wh/anaconda2/envs/dy/lib/python2.7/threading.py", line 801, in __bootstrap_inner
self.run()
File "/home/wh/anaconda2/envs/dy/lib/python2.7/threading.py", line 754, in run
self.__target(*self.__args, **self.__kwargs)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/utils/PrefetchingIter.py", line 60, in prefetch_func
self.next_batch[i] = self.iters[i].next()
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 701, in next
self.get_batch_individual()
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 808, in get_batch_individual
rst.append(self.parfetch(iroidb))
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 816, in parfetch
data, label = get_rpn_batch_quadrangle(iroidb, self.cfg)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/rpn/rpn.py", line 91, in get_rpn_batch_quadrangle
imgs, roidb = get_image_quadrangle_bboxes(roidb, cfg)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/utils/image.py", line 61, in get_image_quadrangle_bboxes
im = im[:, ::-1, :]
TypeError: 'NoneType' object has no attribute 'getitem'
and sometimes like this:
Exception in thread Thread-1:
Traceback (most recent call last):
File "/home/wh/anaconda2/envs/dy/lib/python2.7/threading.py", line 801, in __bootstrap_inner
self.run()
File "/home/wh/anaconda2/envs/dy/lib/python2.7/threading.py", line 754, in run
self.__target(*self.__args, **self.__kwargs)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/utils/PrefetchingIter.py", line 61, in prefetch_func
self.next_batch[i] = self.iters[i].next()
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 701, in next
self.get_batch_individual()
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 808, in get_batch_individual
rst.append(self.parfetch(iroidb))
File "experiments/faster_rcnn/../../faster_rcnn/core/loader.py", line 816, in parfetch
data, label = get_rpn_batch_quadrangle(iroidb, self.cfg)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/rpn/rpn.py", line 91, in get_rpn_batch_quadrangle
imgs, roidb = get_image_quadrangle_bboxes(roidb, cfg)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/utils/image.py", line 66, in get_image_quadrangle_bboxes
im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE)
File "experiments/faster_rcnn/../../faster_rcnn/../lib/utils/image.py", line 219, in resize
im_shape = im.shape
AttributeError: 'NoneType' object has no attribute 'shape'
I'm sure that my images' format is .png . And my log is as followed:
2018-10-12 20:21:08,725 training config:{'CLASS_AGNOSTIC': False,
'MXNET_VERSION': 'mxnet',
'RESIZE_TO_FIX_SIZE': True,
'SCALES': [(1024, 1024)],
'TEST': {'BATCH_IMAGES': 1,
'CXX_PROPOSAL': False,
'DO_MULTISCALE_TEST': False,
'HAS_RPN': True,
'MULTISCALE': [1.0, 1.2, 1.4, 1.6],
'NMS': 0.3,
'PROPOSAL_MIN_SIZE': 0,
'PROPOSAL_NMS_THRESH': 0.7,
'PROPOSAL_POST_NMS_TOP_N': 2000,
'PROPOSAL_PRE_NMS_TOP_N': 20000,
'RPN_MIN_SIZE': 0,
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'max_per_image': 300,
'save_img_path': '/home/wh/Faster_RCNN_for_DOTA/data/vis',
'test_epoch': 59},
'TRAIN': {'ALTERNATE': {'RCNN_BATCH_IMAGES': 0,
'RPN_BATCH_IMAGES': 0,
'rfcn1_epoch': 0,
'rfcn1_lr': 0,
'rfcn1_lr_step': '',
'rfcn2_epoch': 0,
'rfcn2_lr': 0,
'rfcn2_lr_step': '',
'rpn1_epoch': 0,
'rpn1_lr': 0,
'rpn1_lr_step': '',
'rpn2_epoch': 0,
'rpn2_lr': 0,
'rpn2_lr_step': '',
'rpn3_epoch': 0,
'rpn3_lr': 0,
'rpn3_lr_step': ''},
'ASPECT_GROUPING': True,
'BATCH_IMAGES': 1,
'BATCH_ROIS': 128,
'BATCH_ROIS_OHEM': 128,
'BBOX_MEANS': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZATION_PRECOMPUTED': False,
'BBOX_REGRESSION_THRESH': 0.5,
'BBOX_STDS': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
'BBOX_WEIGHTS': array([1., 1., 1., 1., 1., 1., 1., 1.]),
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.1,
'CXX_PROPOSAL': False,
'ENABLE_OHEM': True,
'END2END': True,
'FG_FRACTION': 0.25,
'FG_THRESH': 0.5,
'FLIP': True,
'RESUME': False,
'RPN_BATCH_SIZE': 256,
'RPN_BBOX_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_MIN_SIZE': 0,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'SHUFFLE': True,
'begin_epoch': 0,
'end_epoch': 60,
'lr': 0.0005,
'lr_factor': 0.1,
'lr_step': '45,52',
'model_prefix': 'rcnn_DOTA_quadrangle',
'momentum': 0.9,
'warmup': True,
'warmup_lr': 5e-05,
'warmup_step': 1000,
'wd': 0.0005},
'dataset': {'NUM_CLASSES': 16,
'dataset': 'DOTA_oriented',
'dataset_path': '/home/wh/Faster_RCNN_for_DOTA/data',
'image_set': 'train',
'proposal': 'rpn',
'root_path': '/home/wh/Faster_RCNN_for_DOTA/data',
'test_image_set': 'test'},
'default': {'frequent': 100, 'kvstore': 'device'},
'gpus': '0',
'network': {'ANCHOR_RATIOS': [0.5, 1, 2],
'ANCHOR_SCALES': [8, 16, 32],
'FIXED_PARAMS': ['conv1',
'bn_conv1',
'res2',
'bn2',
'gamma',
'beta'],
'FIXED_PARAMS_SHARED': ['conv1',
'bn_conv1',
'res2',
'bn2',
'res3',
'bn3',
'res4',
'bn4',
'gamma',
'beta'],
'IMAGE_STRIDE': 0,
'NUM_ANCHORS': 9,
'PIXEL_MEANS': array([103.06, 115.9 , 123.15]),
'RCNN_FEAT_STRIDE': 16,
'RPN_FEAT_STRIDE': 16,
'pretrained': './model/pretrained_model/resnet_v1_101',
'pretrained_epoch': 0},
'output_path': './output/rcnn/DOTA_quadrangle',
'symbol': 'resnet_v1_101_rcnn_quadrangle'}
2018-10-12 20:21:11,505 bucketing: data "gt_boxes" has a shape (1L, 386L, 9L), which is larger than already allocated shape (1L, 100L, 9L). Need to re-allocate. Consider putting default_bucket_key to be the bucket taking the largest input for better memory sharing.
2018-10-12 20:21:19,930 bucketing: data "gt_boxes" has a shape (1L, 597L, 9L), which is larger than already allocated shape (1L, 386L, 9L). Need to re-allocate. Consider putting default_bucket_key to be the bucket taking the largest input for better memory sharing.
2018-10-12 20:21:50,888 training config:{'CLASS_AGNOSTIC': False,
'MXNET_VERSION': 'mxnet',
'RESIZE_TO_FIX_SIZE': True,
'SCALES': [(1024, 1024)],
'TEST': {'BATCH_IMAGES': 1,
'CXX_PROPOSAL': False,
'DO_MULTISCALE_TEST': False,
'HAS_RPN': True,
'MULTISCALE': [1.0, 1.2, 1.4, 1.6],
'NMS': 0.3,
'PROPOSAL_MIN_SIZE': 0,
'PROPOSAL_NMS_THRESH': 0.7,
'PROPOSAL_POST_NMS_TOP_N': 2000,
'PROPOSAL_PRE_NMS_TOP_N': 20000,
'RPN_MIN_SIZE': 0,
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'max_per_image': 300,
'save_img_path': '/home/wh/Faster_RCNN_for_DOTA/data/vis',
'test_epoch': 59},
'TRAIN': {'ALTERNATE': {'RCNN_BATCH_IMAGES': 0,
'RPN_BATCH_IMAGES': 0,
'rfcn1_epoch': 0,
'rfcn1_lr': 0,
'rfcn1_lr_step': '',
'rfcn2_epoch': 0,
'rfcn2_lr': 0,
'rfcn2_lr_step': '',
'rpn1_epoch': 0,
'rpn1_lr': 0,
'rpn1_lr_step': '',
'rpn2_epoch': 0,
'rpn2_lr': 0,
'rpn2_lr_step': '',
'rpn3_epoch': 0,
'rpn3_lr': 0,
'rpn3_lr_step': ''},
'ASPECT_GROUPING': True,
'BATCH_IMAGES': 1,
'BATCH_ROIS': 128,
'BATCH_ROIS_OHEM': 128,
'BBOX_MEANS': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZATION_PRECOMPUTED': False,
'BBOX_REGRESSION_THRESH': 0.5,
'BBOX_STDS': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
'BBOX_WEIGHTS': array([1., 1., 1., 1., 1., 1., 1., 1.]),
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.1,
'CXX_PROPOSAL': False,
'ENABLE_OHEM': True,
'END2END': True,
'FG_FRACTION': 0.25,
'FG_THRESH': 0.5,
'FLIP': True,
'RESUME': False,
'RPN_BATCH_SIZE': 256,
'RPN_BBOX_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_MIN_SIZE': 0,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'SHUFFLE': True,
'begin_epoch': 0,
'end_epoch': 60,
'lr': 0.0005,
'lr_factor': 0.1,
'lr_step': '45,52',
'model_prefix': 'rcnn_DOTA_quadrangle',
'momentum': 0.9,
'warmup': True,
'warmup_lr': 5e-05,
'warmup_step': 1000,
'wd': 0.0005},
'dataset': {'NUM_CLASSES': 16,
'dataset': 'DOTA_oriented',
'dataset_path': '/home/wh/Faster_RCNN_for_DOTA/data',
'image_set': 'train',
'proposal': 'rpn',
'root_path': '/home/wh/Faster_RCNN_for_DOTA/data',
'test_image_set': 'test'},
'default': {'frequent': 100, 'kvstore': 'device'},
'gpus': '0',
'network': {'ANCHOR_RATIOS': [0.5, 1, 2],
'ANCHOR_SCALES': [8, 16, 32],
'FIXED_PARAMS': ['conv1',
'bn_conv1',
'res2',
'bn2',
'gamma',
'beta'],
'FIXED_PARAMS_SHARED': ['conv1',
'bn_conv1',
'res2',
'bn2',
'res3',
'bn3',
'res4',
'bn4',
'gamma',
'beta'],
'IMAGE_STRIDE': 0,
'NUM_ANCHORS': 9,
'PIXEL_MEANS': array([103.06, 115.9 , 123.15]),
'RCNN_FEAT_STRIDE': 16,
'RPN_FEAT_STRIDE': 16,
'pretrained': './model/pretrained_model/resnet_v1_101',
'pretrained_epoch': 0},
'output_path': './output/rcnn/DOTA_quadrangle',
'symbol': 'resnet_v1_101_rcnn_quadrangle'}
2018-10-12 20:21:55,379 bucketing: data "gt_boxes" has a shape (1L, 263L, 9L), which is larger than already allocated shape (1L, 100L, 9L). Need to re-allocate. Consider putting default_bucket_key to be the bucket taking the largest input for better memory sharing.
2018-10-12 20:21:56,718 bucketing: data "gt_boxes" has a shape (1L, 295L, 9L), which is larger than already allocated shape (1L, 263L, 9L). Need to re-allocate. Consider putting default_bucket_key to be the bucket taking the largest input for better memory sharing.
2018-10-12 20:22:08,772 bucketing: data "gt_boxes" has a shape (1L, 1028L, 9L), which is larger than already allocated shape (1L, 295L, 9L). Need to re-allocate. Consider putting default_bucket_key to be the bucket taking the largest input for better memory sharing.
2018-10-12 20:22:19,004 Epoch[0] Batch [100] Speed: 3.89 samples/sec Train-RPNAcc=0.838219, RPNLogLoss=0.442614, RPNL1Loss=0.823888, RCNNAcc=0.750155, RCNNLogLoss=2.288598, RCNNL1Loss=0.208822,
So, what's wrong?
The text was updated successfully, but these errors were encountered: