-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_task.py
235 lines (208 loc) · 7.57 KB
/
main_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os.path
import csv
import numpy as np
from options.base_options import BaseOptions
from torch.utils.tensorboard import SummaryWriter
from models.memory_module import MemoryModule
from models.clip_module import CLIPModule
from models.mix_model import MixModel
from engines.main_engine import MainEngine
from data.HDF5_dataset import get_hdf5_continual_learning_dataset, get_hdf5_held_out_dataset
from data.scenario import (
get_target_task,
get_union_task,
get_zero_shot_task,
get_union_zero_shot_task,
get_mix_task,
get_mix_zero_shot_task,
)
def seed_everything(seed):
import random
import os
import numpy as np
import torch
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
# seed_everything(42)
# Parse arguments
opt = BaseOptions()
module_list = [
MixModel,
MemoryModule,
CLIPModule,
MainEngine
]
args = opt.parse(module_list, is_train=True)
# create model
model = MixModel(args)
model = model.to(args.device)
# print(model)
learnable_params = []
# create engine
engine = MainEngine(args, model)
# resume or load model
if args.resume:
engine.resume(args.resume_ckpt)
# create logger
logger = SummaryWriter(log_dir=args.results_dir)
engine.logger = logger
# create datasets
(
incremental_train_dataset,
incremental_test_dataset,
) = get_hdf5_continual_learning_dataset(args)
_, held_out_test_datasets = get_hdf5_held_out_dataset(args)
# Flexible inference
target_task = get_target_task(args)
zero_shot_task = get_zero_shot_task(args)
union_task = get_union_task(args)
union_zero_shot_task = get_union_zero_shot_task(args)
mix_task = get_mix_task(args)
mix_zero_shot_task = get_mix_zero_shot_task(args)
# overall_acc_list = []
# current_acc_list = []
# past_acc_list = []
overall_acc_list = []
# columns represents stages and rows represents datasets
overall_acc_array = np.zeros(
(len(incremental_test_dataset), len(incremental_test_dataset))
)
heldout_acc_array = np.zeros(
(len(held_out_test_datasets), len(incremental_test_dataset))
)
for i in range(incremental_train_dataset.num_stages):
print(f"Stage {i}")
if hasattr(model, "retrieval_branch"):
model.retrieval_branch.extend_memory(incremental_train_dataset)
acc_list = []
for j in range(len(incremental_test_dataset)):
acc = engine.evaluate(
[incremental_test_dataset[j]],
epoch=args.n_epochs,
evaluation_tags=["target_dataset"],
# evaluate_current_past=True,
stage=i,
)
overall_acc_array[j, i] = acc["target_dataset"]["overall"]
acc_list.append(acc["target_dataset"]["overall"])
overall_acc_list.append(np.mean(acc_list))
acc_list = []
for j in range(len(held_out_test_datasets)):
acc = engine.evaluate(
[held_out_test_datasets[j]],
epoch=args.n_epochs,
evaluation_tags=["zero_shot_dataset"],
# evaluate_current_past=True,
stage=i,
)
heldout_acc_array[j, i] = acc["zero_shot_dataset"]["overall"]
acc_list.append(acc["zero_shot_dataset"]["overall"])
overall_acc_list.append(np.mean(acc_list))
incremental_train_dataset.forward_stage()
np.savetxt(
os.path.join(args.results_dir, "overall_acc_array.csv"),
overall_acc_array,
fmt="%.3e",
delimiter=",",
)
np.savetxt(
os.path.join(args.results_dir, "heldout_acc_array.csv"),
heldout_acc_array,
fmt="%.3e",
delimiter=",",
)
with open(os.path.join(args.results_dir, args.csv_file), "a") as outfile:
writer = csv.writer(outfile)
writer.writerow(overall_acc_list)
# Target task
target_acc = []
for i in range(len(target_task)):
acc = engine.evaluate(
[target_task[i]], epoch=i, evaluation_tags=["target_dataset"], stage=i
)
target_acc.append(acc["target_dataset"]["overall"])
print("Target task: ", np.mean(target_acc))
task_acc = [np.mean(target_acc)]
# Zero-shot task
zero_shot_acc = []
for i in range(len(zero_shot_task)):
acc = engine.evaluate(
[zero_shot_task[i]], epoch=i, evaluation_tags=["zero_shot_dataset"], stage=i
)
zero_shot_acc.append(acc["zero_shot_dataset"]["overall"])
print("Zero-shot task: ", np.mean(zero_shot_acc))
task_acc.append(np.mean(zero_shot_acc))
# Union task
union_acc = []
for i in range(union_task.num_stages):
acc = engine.evaluate(
[union_task], epoch=i, evaluation_tags=["union_dataset"], stage=i
)
union_acc.append(acc["union_dataset"]["overall"])
union_task.forward_stage()
print("Union task: ", np.mean(union_acc))
task_acc.append(np.mean(union_acc))
# Union zero-shot task
union_task_combining_zs_labels_acc = []
for i in range(union_zero_shot_task[0].num_stages):
acc = engine.evaluate(
[union_zero_shot_task[0]],
epoch=i,
evaluation_tags=["union_dataset"],
stage=i,
)
union_task_combining_zs_labels_acc.append(acc["union_dataset"]["overall"])
union_zero_shot_task[0].forward_stage()
acc = engine.evaluate(
[union_zero_shot_task[1]],
epoch=i,
evaluation_tags=["zero_shot_dataset"],
stage=i,
)
print(
"Union zero-shot task: ",
np.mean([np.mean(union_task_combining_zs_labels_acc), acc["zero_shot_dataset"]["overall"]]),
)
task_acc.append(np.mean([np.mean(union_task_combining_zs_labels_acc), acc["zero_shot_dataset"]["overall"]]))
# Mix task
mix_task_acc = []
for i in range(mix_task.num_stages):
acc = engine.evaluate(
[mix_task], epoch=i, evaluation_tags=["mix_dataset"], stage=i
)
mix_task_acc.append(acc["mix_dataset"]["overall"])
mix_task.forward_stage()
print("Mix task: ", np.mean(mix_task_acc))
task_acc.append(np.mean(mix_task_acc))
# Mix zero-shot task
mix_task_acc = []
for i in range(mix_task.num_stages):
acc = engine.evaluate(
[mix_zero_shot_task[0]], epoch=i, evaluation_tags=["mix_dataset"], stage=i
)
mix_task_acc.append(acc["mix_dataset"]["overall"])
mix_zero_shot_task[0].forward_stage()
print("Mix zero-shot task: ", np.mean(mix_task_acc))
task_acc.append(np.mean(mix_task_acc))
# mix_zero_shot_acc = [np.mean(mix_task_acc)]
# acc = engine.evaluate(
# [mix_zero_shot_task[1]], epoch=i, evaluation_tags=["zero_shot_dataset"], stage=i
# )
# mix_zero_shot_acc.append(acc["zero_shot_dataset"]["overall"])
# print("Mix zero-shot task: ", np.mean(mix_zero_shot_acc))
# task_acc.append(np.mean(mix_zero_shot_acc))
if not os.path.isdir(os.path.join(args.results_dir, "flexible_inference")):
os.makedirs(os.path.join(args.results_dir, "flexible_inference"))
with open(
os.path.join(args.results_dir, "flexible_inference", args.csv_file), "a"
) as outfile_2:
writer_2 = csv.writer(outfile_2)
writer_2.writerow(
["target", "zero_shot", "union", "union_zero_shot", "mix", "mix_zero_shot"]
)
writer_2.writerow(task_acc)