diff --git a/churn_model_new/README.md b/churn_model_new/README.md index 046afc4..fb1a77c 100644 --- a/churn_model_new/README.md +++ b/churn_model_new/README.md @@ -25,7 +25,8 @@ The primary functionality is to predict the probability of customer churn. The c 2. **Install Dependencies**: Make sure you have the required dependencies installed, as specified in the `conda.yml` file. ```bash - conda env create -f main/conda.yaml + conda config --set ssl_verify false + conda env create -f main/conda.yml conda activate churn_model ``` @@ -34,6 +35,7 @@ The primary functionality is to predict the probability of customer churn. The c ```bash pip install qwak-sdk qwak configure + pip install "qwak-inference[batch,feedback]" ``` 5. **Run the Model Locally**: Execute the following command to test the model locally: diff --git a/churn_model_new/main/__pycache__/__init__.cpython-39.pyc b/churn_model_new/main/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000..1f2b6b3 Binary files /dev/null and b/churn_model_new/main/__pycache__/__init__.cpython-39.pyc differ diff --git a/churn_model_new/main/__pycache__/model.cpython-39.pyc b/churn_model_new/main/__pycache__/model.cpython-39.pyc new file mode 100644 index 0000000..38ebcce Binary files /dev/null and b/churn_model_new/main/__pycache__/model.cpython-39.pyc differ diff --git a/churn_model_new/main/conda.yml b/churn_model_new/main/conda.yml index 56092b3..4bec6a0 100644 --- a/churn_model_new/main/conda.yml +++ b/churn_model_new/main/conda.yml @@ -5,7 +5,9 @@ channels: dependencies: - python=3.9 - pip - - pandas + - pandas=2.2.2 + - numpy=2.0.0 - scikit-learn + - pybind11>=2.12 - xgboost - - scipy=1.10.1 + - scipy diff --git a/churn_model_new/test_model_locally.py b/churn_model_new/test_model_locally.py index 1c1b2e0..1f99b20 100644 --- a/churn_model_new/test_model_locally.py +++ b/churn_model_new/test_model_locally.py @@ -30,6 +30,9 @@ 'Agitation_Level' : 70 }] + # Print that it is starting the process + print("\n\nPREDICTION STARTING:\n\n") + # Create the DataFrame and convert it to JSON df = DataFrame(feature_vector).to_json()