From 9b1eb261b830edc54ff9d717204b3dc795188c79 Mon Sep 17 00:00:00 2001 From: williammanning Date: Mon, 30 Dec 2024 10:44:48 -0800 Subject: [PATCH] Update --- churn_model_new/README.md | 4 +++- .../main/__pycache__/__init__.cpython-39.pyc | Bin 0 -> 356 bytes .../main/__pycache__/model.cpython-39.pyc | Bin 0 -> 2975 bytes churn_model_new/main/conda.yml | 6 ++++-- churn_model_new/test_model_locally.py | 3 +++ 5 files changed, 10 insertions(+), 3 deletions(-) create mode 100644 churn_model_new/main/__pycache__/__init__.cpython-39.pyc create mode 100644 churn_model_new/main/__pycache__/model.cpython-39.pyc diff --git a/churn_model_new/README.md b/churn_model_new/README.md index 046afc4..fb1a77c 100644 --- a/churn_model_new/README.md +++ b/churn_model_new/README.md @@ -25,7 +25,8 @@ The primary functionality is to predict the probability of customer churn. The c 2. **Install Dependencies**: Make sure you have the required dependencies installed, as specified in the `conda.yml` file. ```bash - conda env create -f main/conda.yaml + conda config --set ssl_verify false + conda env create -f main/conda.yml conda activate churn_model ``` @@ -34,6 +35,7 @@ The primary functionality is to predict the probability of customer churn. The c ```bash pip install qwak-sdk qwak configure + pip install "qwak-inference[batch,feedback]" ``` 5. **Run the Model Locally**: Execute the following command to test the model locally: diff --git a/churn_model_new/main/__pycache__/__init__.cpython-39.pyc b/churn_model_new/main/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1f2b6b3a96de2daaf380f9e599d6b7957c26cd19 GIT binary patch literal 356 zcmY*U%Sr<=6up`0h!ndQ{DLlOexQh0A0V~}B1kuBOk$1ZF(etZYyFvilCyQ?&b2FV zrigmsK2FYkobbV*4`^?ni{&Hc_YD48f#485?qZN2i2+OIgn%q$`3mzw_O4)9eGsJA zq}{tYJMuoJ$$b;tWl&O!q`jMZsf@suf0kz^=y3}}f)~I|WES$tHH03fE_^9^9aV_* zRvTmKu@{Y1E=Brq7yOc1GpYl}GeS|j8mVV)Yoj7PKSg$Waq@#jmc(pU!kl`dmTN~D z(@rPG_Ul#KH=fH)L%toe4j>_mn+?mh>PAC}uzULzxTz{6+U+rRHAWrezjYgS%5P6m BR2TpN literal 0 HcmV?d00001 diff --git a/churn_model_new/main/__pycache__/model.cpython-39.pyc b/churn_model_new/main/__pycache__/model.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..38ebccea62c5f46ec7565e2c66ecb57ebff2f9dc GIT binary patch literal 2975 zcmaJ@&5s;M74NG4?)mb@8%&bR5I|&5vJ)XVfDnnZwi8F*#mIoH7E-6Dt7f(*{V}ep z+3bvFPtJ9@13}tFT>O9V2XLjXoGc-cGg4yStDbFda@cBh^{ZF?>f^m%{a&TLUSvV} z*O#Bne%`mNe`DinaiH-&yz&#Mn8iq8#m$$*)U@r`HeV-p;Y$mz^kbjkKXwt6VH}oG z9F?88V{}f@Eqif~SRY!Kv-H!0n(<;}>%rZV zMUiK@y2n$s6kK;q&!g;!m#H4yucln^D&xOis>M=)^$jJ`yh;?8Dv@BSG9346v7zxk zyz-||aVsXwg8dLiKeu2%Hgn+XaQEE1*sk*_iGAj?0Q3P1VXcvVxGF7#Z`P(p??iD;0RbI^!kt#m>^PjLhdv86M zi76GhBgiys{J(+XZ!ZC-<*?FZjt)=#6T=D8yyVIghmG%~?NK2{h zli4Khfd}@BRLXpsbD`Z51E!rP5IY^h9EtfE0^&$sOrKd|7v}ljWc)kHg&a@vqA16A z>TFr^O3CqjD(cy|EZ$j&6qb?kak+YjpQPoY;Bx%&J?K4naQCvEq1O{LV^Z|?`3oGAzfx$^4Q2E->(t)Rxj%yg@i)R8=AO}0M+F;aV>1sSb>{rRIdxCH zQ~xx8*oO0H<8J(ow+W_nMp$@e6U0Dx-a*|3Jq=a&yvL$Vn8U2ZQr&rf=m!D3g(Li*kdBKxJ(*@Ik z;3-RRqYe}GLSUH04YaqXxzeu8YQe=0Dk21B$(6`69iVLHkHk&rj9)Qh!W?z6R2;Ai zb5l0eWTnaD*ngauCCA;z3G5^XOE~PYzq(YfuBdfzxlsf8rg{}u;7*o#!CnVZz6q5@ zcF7GpAQ7Q2Jcp9tMc?%Zg(vvR^AWM@?_GygGg?M*q-}BGi>z(P<^vD_I@US4u;vs1 zN#-`P+>9c}ozb}i5OvQ8KotLSH#Wf5QQq7KKzRT@04tKr`lD#LEx$eD!$m`OZ?WlU z2;MxZ*)W$w1wC+ZmuWG~FDZH3z1NzH@4}MAYgnNZ#2ZinLHHRsy{x3(F>IPV6!jzp zg2>fs6qsPf9U!7)f`kiH)0;M_AVFYA@go>T`+^%hYk#{w@k3OHcK}=W5L+YH1X{ce z>bM=D77PX)Y;7Q>1{AvUQX#(;MDa5i027D&4pf%cwH*kYN9os|)1?js&-r@&{p-TE z9s3&$gF!@yn85u51k4hQDBzGY3XU!PAUYdmc)@aE1G_SY;jA3lR3ncEL zRALGE5&R`wfUAbN8mfB8t7$E=#;E;qSWm$=t4m0AL&2XcArZ=#)&^`qFOH!PN39mz zKu`B?XIZ_hRPumVGdSkqZQzh(AJUf&?^miw9u{e(qu(E-`Bv^V@&T7JopBx9Nmt21 z4uA!Ct&;t;D5MVV9`mgdrA8SY=CdQ!s5_0^bTkv0F(NZ(qweo7rFz80@z#EDdzJ&2 zA}${wPm7-bG+!9xO5mcaZckP}AKfM0i;l-b1MTfo*{ zqy7l~mwQlIE~OEW)3wik>2CCb{>Qtue)BraH$xweLQKvW5TNfU!3@4MRNhUJC%_#| zkHC{9-o?rgx1BC>bL_++>hKh{E_=-_Vv<6h#6zifu4uP@LoYY}M&HJ_=2.12 - xgboost - - scipy=1.10.1 + - scipy diff --git a/churn_model_new/test_model_locally.py b/churn_model_new/test_model_locally.py index 1c1b2e0..1f99b20 100644 --- a/churn_model_new/test_model_locally.py +++ b/churn_model_new/test_model_locally.py @@ -30,6 +30,9 @@ 'Agitation_Level' : 70 }] + # Print that it is starting the process + print("\n\nPREDICTION STARTING:\n\n") + # Create the DataFrame and convert it to JSON df = DataFrame(feature_vector).to_json()