-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaddGeoNames.py
154 lines (132 loc) · 5.08 KB
/
addGeoNames.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import pandas as pd
import argparse
from datetime import datetime
import numpy as np
import convertGeoNamesFromLCNAF as geo
dt = datetime.now().strftime('%Y-%m-%d %H.%M.%S')
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--file')
parser.add_argument('-v', '--verify', choices=['yes', 'no'])
parser.add_argument('-fa', '--fast',)
parser.add_argument('-lc', '--lcnaf')
args = parser.parse_args()
if args.file:
filename = args.file
else:
filename = input('Enter marc spreadsheet filename (including \'.csv\'): ')
if args.verify:
verify = args.verify
else:
verify = input("Enter 'yes' to verify headings; 'no' to skip: ")
if verify == 'no':
if args.fast:
fastresults = args.fast
else:
fastresults = input('Enter name of fast result csv')
if args.lcnaf:
lcnafresults = args.lcnaf
else:
lcnaf = input('Enter name of lcnaf result csv')
df = pd.read_csv(filename)
print(df.head)
fastList = []
lcnafList = []
# Create dictionary to use in convertLCNAFToGeoNames function.
def addDictonary(columnName, vocab):
term = data.get(columnName)
if pd.isna(term):
pass
else:
if '|' in term:
terms = term.split('|')
else:
terms = [term]
for x in terms:
vocabDict = {'term': x, 'oindex': index}
if vocab == 'fast':
fastList.append(vocabDict)
else:
lcnafList.append(vocabDict)
# Group matching headings together in order to perform fewer searches.
# Create column 'oindex' to keep track of original index of headings.
def condenseHeadings(listName):
df_2 = pd.DataFrame.from_dict(listName)
df_2 = df_2.replace(r'^\s*$', np.nan, regex=True)
df_2.dropna(axis=0, inplace=True)
pivoted = pd.pivot_table(df_2, index=['term'], values='oindex',
aggfunc=lambda x: '|'.join(str(v) for v in x))
pivoted.reset_index(inplace=True)
listName = pd.DataFrame.to_dict(pivoted, orient='records')
return listName
# Group headings by original index.
# For each original index number, get rid of duplicate headings.
def explodeHeadingsByIndex(dataframe):
dataframe.oindex = dataframe.oindex.str.split('|')
dataframe = dataframe.drop(columns=['term', 'geoname0',
'name0', 'geoname1',
'name1', 'geoname2',
'name2'])
dataframe = dataframe.explode('oindex')
dataframe = dataframe.dropna()
dataframe = pd.pivot_table(dataframe, index=['oindex'], values='fullName',
aggfunc=lambda x: '|'.join(str(v) for v in x))
dataframe.fullName = dataframe.fullName.str.split('|')
dataframe.fullName = dataframe.apply(lambda row:
set(row['fullName']), axis=1)
dataframe.fullName = dataframe.fullName.str.join('|')
dataframe.reset_index(inplace=True)
return dataframe
# Create spreadsheet with headings converted to GeoNames.
if verify == 'yes':
for index, data in df.iterrows():
addDictonary('spatial_fast', 'fast')
addDictonary('spatial_lcnaf', 'lcnaf')
fastList = condenseHeadings(fastList)
lcnafList = condenseHeadings(lcnafList)
lcnafresults = geo.convertLCNAFToGeoNames(lcnafList, 'yes')
df_lcnaf = pd.DataFrame.from_dict(lcnafresults)
df_lcnaf.to_csv('lcnaf_'+filename, index=False)
fastresults = geo.convertFASTToGeoNames(fastList, 'yes')
df_fast = pd.DataFrame.from_dict(fastresults)
df_fast.to_csv('fast_'+filename, index=False)
# Use pre-existing spreadsheet with headings converted to GeoNames.
else:
df_fast = pd.read_csv(fastresults)
df_lcnaf = pd.read_csv(lcnafresults)
ex_fast = explodeHeadingsByIndex(df_fast)
ex_lcnaf = explodeHeadingsByIndex(df_lcnaf)
# Merge results from FAST and LCNAF into one new column 'spatial.'
# Remove duplicate result from spatial.
frame = pd.merge(ex_fast, ex_lcnaf, how='outer', on='oindex', suffixes=('_1', '_2'))
print(frame.head)
spatiallist = []
for index, data in frame.iterrows():
little = []
geo1 = data['fullName_1']
if pd.isna(geo1):
pass
else:
geo1 = geo1.split('|')
for item in geo1:
if item not in little:
little.append(item)
geo2 = data['fullName_2']
if pd.isna(geo2):
pass
else:
geo2 = geo2.split('|')
for item in geo2:
if item not in little:
little.append(item)
little = '|'.join(little)
littledict = {'index': index, 'spatial': little}
spatiallist.append(littledict)
spatial = pd.DataFrame.from_dict(spatiallist)
frame = pd.merge(frame, spatial, left_index=True, right_index=True)
# Merge 'spatial' column into marc spreadsheet.
frame.oindex = frame.oindex.astype('int64')
updated = pd.merge(df, frame, how='left', left_index=True, right_on='oindex')
updated = updated.drop(columns=['oindex', 'spatial_fast', 'spatial_lcnaf'])
# Create updated marc spreadsheet.
new_name = filename.replace('02', '03')
updated.to_csv(path_or_buf=new_name, encoding='utf-8', index=False)