Skip to content

Latest commit

 

History

History
427 lines (349 loc) · 8.92 KB

README.md

File metadata and controls

427 lines (349 loc) · 8.92 KB

JinaAI JavaScript SDK

The JinaAI JavaScript SDK serves as an efficient conduit for incorporating Jina AI's suite of products — SceneXplain, PromptPerfect, Rationale, BestBanner, and JinaChat — into your JavaScript applications. It provides a potent interface to Jina AI's APIs, letting you craft and optimize prompts with ease, making it an indispensable tool for streamlined application development.

Installing

Package manager

Using npm:

$ npm install jinaai

Using Yarn:

$ yarn add jinaai

You can import the library using the import or require approach:

import JinaAI from 'jinaai';
const JinaAI = require('jinaai');

API secrets

To generate an API secret, you need to authenticate on each respective platform's API tab:

Note: Each secret is product-specific and cannot be interchanged. If you're planning to use multiple products, you'll need to generate a separate secret for each.

Example usage

Import the SDK and instantiate a new client with your authentication secret:

import JinaAI from 'jinaai';

const jinaai = new JinaAI({ secrets: {
    'promptperfect-secret': 'XXXXXX',
    'scenex-secret': 'XXXXXX',
    'rationale-secret': 'XXXXXX',
    'jinachat-secret': 'XXXXXX',
    'bestbanner-secret': 'XXXXXX',
}});

Describe images:

const descriptions = await jinaai.describe(
    'https://picsum.photos/200'
);

Evaluate situations:

const decisions = await jinaai.decide(
    'Going to Paris this summer', 
    { analysis: 'proscons' }
);

Optimize prompts:

const prompts = await jinaai.optimize(
    'Write an Hello World function in Typescript'
);

Generate complex answer:

const output = await jinaai.generate(
    'Give me a recipe for a pizza with pineapple'
);

Create images from text:

const output = await jinaai.imagine(
    'A controversial fusion of sweet pineapple and savory pizza.'
);

Use APIs together:

const situations = [
    'factory-1.png',
    'factory-2.png',
    'factory-3.png',
    'factory-4.png',
].map(i => toBase64(i));

const descriptions = await jinaai.describe(situations);

const prompt1 = [
    'Do any of those situations present a danger?',
    'Reply with [YES] or [NO] and explain why',
    ...descriptions.results.map(desc => 'SITUATION: ' + desc.output),
];

const analysis = await jinaai.generate(
    prompt1.join('\n')
);

const prompt2 = [
    'What should be done first to make those situations safer?',
    'I only want the most urgent situation',
    ...descriptions.results.map(desc => 'SITUATION: ' + desc.output),
];

const recommendation = await jinaai.generate(propmt2.join('\n'));

const swot = await jinaai.decide(
    recommendation.output,
    { analysis: 'swot' }
);

const banners = await jinaai.imagine(
    descriptions!.results.map(d => d.output)
);

Raw Output

You can retrieve the raw output of each APIs by passing raw: true in the options:

const descriptions = await jinaai.describe(
    'https://picsum.photos/200',
    { raw: true }
);

console.log(descriptions.raw)

Custom Base Urls

Custom base Urls can be passed directly in the client's constructor:

const jinaai = new JinaAI({
    baseUrls: {
        promptperfect: 'https://promptperfect-customurl.jina.ai',
        scenex: 'https://scenex-customurl.jina.ai',
        rationale: 'https://rationale-customurl.jina.ai',
        jinachat: 'https://jinachat-customurl.jina.ai',
        bestbanner: 'https://bestbanner-customurl.jina.ai',
    }
});

API Documentation

  • JinaAi.describe
JinaAI.describe(
    input: string | string[],
    options?: SceneXOptions
): Promise<SceneXOutput>
type SceneXAlgorithm = 'Aqua' | 'Bolt' | 'Comet' | 'Dune' | 'Ember' | 'Flash' | 'Glide' | 'Hearth' | 'Inception' | 'Jelly';
type SceneXFeatures = Array<'high_quality' | 'question_answer' | 'tts' | 'opt-out' | 'json'>;
type SceneXOptions = {
    algorithm?: SceneXAlgorithm,
    features?: SceneXFeatures,
    languages?: Array<Languages>,
    question?: string,
    style?: 'default' | 'concise' | 'prompt',
    output_length?: number | null,
    json_schema?: Object,
    callback_url?: string,
    reportProgress?: (videoIndex: number, progress: string)=> void,
};
type SceneXOutput = {
    results: Array<{
        output: string,
        i18n?: {
            [key: string]: string | SceneXStoryOutput | SceneXSVideoOutput
        },
        tts?: {
            [key: string]: string
        },
        ssml?: {
            [key: string]: string
        }
    }>
};
// used when algorithm is set to 'Hearth' 
type SceneXStoryOutput = Array<{
    isNarrator: boolean,
    message: string,
    name: string
}>; 
// used when algorithm is set to 'Inception' 
type SceneXSVideoOutput = {
    summary: string,
    events: Array<{
        description: string,
        timestamp: string
    }>
};
  • JinaAi.optimize
JinaAI.optimize(
    input: string | string[],
    options?: PromptPerfectOptions
): Promise<PromptPerfectOutput> 
type PromptPerfectOptions = {
    targetModel?: 'chatgpt' | 'gpt-4' | 'stablelm-tuned-alpha-7b' |
    'claude' | 'cogenerate' | 'text-davinci-003' | 'dalle' | 'sd' |
    'midjourney' | 'kandinsky' | 'lexica',
    features?: Array<
        'preview' | 'no_spam' | 'shorten' | 'bypass_ethics' |
        'same_language' | 'always_en' | 'high_quality' |
        'redo_original_image' | 'variable_subs' | 'template_run'
    >,
    iterations?: number,
    previewSettings?: {
        'temperature': number,
        'topP': number,
        'topK': number,
        'frequencyPenalty': number,
        'presencePenalty': number
    },
    previewVariables?: {
        [key: string]: string
    }
    timeout?: number,
    target_language?: Languages
};
type PromptPerfectOutput = {
    results: Array<{
        output: string,
    }>
};
  • JinaAI.decide
JinaAi.decide(
    input: string | string[],
    options?: RationaleOptions
): Promise<RationaleOutput>
type RationaleOptions = {
    analysis?: 'proscons' | 'swot' | 'multichoice' | 'outcomes',
    style?: 'concise' | 'professional' | 'humor' | 'sarcastic' | 'childish' | 'genZ',
    profileId?: string
};
export type RationaleOutput = {
    results: Array<{
        proscons?: RationaleProsConsOutput,
        swot?: RationaleSWOTOutput,
        multichoice?: RationaleMultichoiceOutput,
        outcomes?: RationaleOutcomesOutput
    }>
};
type RationaleProsConsOutput = {
    pros: {
        [key: string]: string
    },
    cons: {
        [key: string]: string
    },
    bestChoice: string,
    conclusion: string,
    confidenceScore: number
};
type RationaleSWOTOutput = {
    strengths: {
        [key: string]: string
    },
    weaknesses: {
        [key: string]: string
    },
    opportunities: {
        [key: string]: string
    },
    threats: {
        [key: string]: string
    },
    bestChoice: string,
    conclusion: string,
    confidenceScore: number
};
type RationaleMultichoiceOutput = {
    [key: string]: string
};
type RationaleOutcomesOutput = Array<{
    children: RationaleOutcomesOutput,
    labal: string,
    sentiment: string
}>;
  • JinaAI.generate
JinaAi.generate(
    input: string | string[],
    options?: JinaChatOptions
): Promise<JinaChatOutput>
type JinaChatOptions = {
    role?: 'user' | 'assistant'
    name?: string,
    chatId?: string,
    stream?: boolean,
    temperature?: number,
    top_p?: number,
    stop?: string | Array<string>,
    max_tokens?: number,
    presence_penalty?: number,
    frequency_penalty?: number,
    logit_bias?: { [key: string]: number },
    image?: string
};
type JinaChatOutput = {
    output: string,
    chatId: string
};
  • JinaAi.imagine
JinaAI.imagine(
    input: string | string[],
    options?: BestBannerOptions
): Promise<BestBannerOutput>
type BestBannerOptions = {
    style?: 'default' | 'photographic' | 'minimalist' | 'flat',
};
type BestBannerOutput = {
    results: Array<{
        output: Array<string>,
    }>
};
  • JinaAi.utils
JinaAI.utils.imageToBase64(filePath: string): string
JinaAI.utils.isUrl(str: string): boolean
JinaAI.utils.isBase64(str: string): boolean