forked from HuberTRoy/leetCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSlidingWindowMaximum.py
89 lines (66 loc) · 2.64 KB
/
SlidingWindowMaximum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
"""
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Return the max sliding window.
Example:
Input: nums = [1,3,-1,-3,5,3,6,7], and k = 3
Output: [3,3,5,5,6,7]
Explanation:
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Note:
You may assume k is always valid, 1 ≤ k ≤ input array's size for non-empty array.
Follow up:
Could you solve it in linear time?
这个我的思路是:
1. 先把前 k 个数取出来,然后排序一组,不排序一组。
2. 排序的一组作为查找使用。 不排序的一组作为删除增加会用。
3. 这里也可以使用堆代替排序,红黑树应该最好不过了。
4. 这里使用排序过的列表是为了能够使用二分法,从而达到 log n 级别的查找和后续添加。
但同时因为即使在 log n级别查找到要添加删除的位置,进行列表的添加和删除仍然是一个 O(n) 级别的事情...
所以使用堆或者红黑树是最好的,添加和删除都是 log n 级别的。
5. sorted list 主要是进行获取最大与删除冗余,这里使用二分法来删除冗余。
6. unsorted list 用于知道要删除和添加的都是哪一个。
beat 31% 176ms.
测试地址:
https://leetcode.com/problems/sliding-window-maximum/description/
"""
from collections import deque
import bisect
class Solution(object):
def find_bi(self, nums, target):
lo = 0
hi = len(nums)
while lo < hi:
mid = (lo + hi) // 2
if nums[mid] == target:
return mid
if nums[mid] < target:
lo = mid + 1
else:
hi = mid
def maxSlidingWindow(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
if not nums:
return []
x = nums[:k]
y = sorted(x)
x = deque(x)
maxes = max(x)
result = [maxes]
for i in nums[k:]:
pop = x.popleft()
x.append(i)
index = self.find_bi(y, pop)
y.pop(index)
bisect.insort_left(y, i)
result.append(y[-1])
return result