forked from HuberTRoy/leetCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFindBottomLeftTreeValue.py
94 lines (77 loc) · 2.24 KB
/
FindBottomLeftTreeValue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
"""
Given a binary tree, find the leftmost value in the last row of the tree.
Example 1:
Input:
2
/ \
1 3
Output:
1
Example 2:
Input:
1
/ \
2 3
/ / \
4 5 6
/
7
Output:
7
返回最底层最左边的一个节点的值。
思路:
使用广度优先算法:
1. 也可以用深度优先算法,不过广度优先的话所需代码更少,更好理解。
2. 广度优先:
1 遍历1
/ \
2 3 遍历 2 3
/ / \
4 5 6 遍历 4 5 6
/
7 遍历 7
深度优先:
1 遍历1
/ \
2 3 遍历2 -> 4
/ / \
4 5 6 遍历 3 -> 5 -> 7,3 -> 6
/
7
3. 广度优先运用在此处是以「层」为概念的,遍历完一层,再遍历一层。
由于是返回最左边,所以从右向左。
用两个列表,一个存放本层所有节点,一个存放本层所有节点的下层所有节点。
遍历完本层后合并存放下层的列表,如果没有节点则返回结果。
遍历本层时遵从 right to left. 有值就保存为结果。
测试用例:
https://leetcode.com/problems/find-bottom-left-tree-value/description/
40ms beat 74%.
"""
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def findBottomLeftValue(self, root):
"""
:type root: TreeNode
:rtype: int
"""
waiting_for_access = [root]
new_waiting_for_access = []
result = root.val
while 1:
while waiting_for_access:
node = waiting_for_access.pop()
if node.right:
new_waiting_for_access.append(node.right)
result = node.right.val
if node.left:
new_waiting_for_access.append(node.left)
result = node.left.val
if not new_waiting_for_access:
return result
waiting_for_access.extend(new_waiting_for_access[::-1])
new_waiting_for_access = []