forked from Element-Research/rnn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLSTM.lua
302 lines (267 loc) · 10.4 KB
/
LSTM.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
------------------------------------------------------------------------
--[[ LSTM ]]--
-- Long Short Term Memory architecture.
-- Ref. A.: http://arxiv.org/pdf/1303.5778v1 (blueprint for this module)
-- B. http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf
-- C. http://arxiv.org/pdf/1503.04069v1.pdf
-- D. https://github.com/wojzaremba/lstm
-- Expects 1D or 2D input.
-- The first input in sequence uses zero value for cell and hidden state
-- For p > 0, it becomes Bayesian GRUs [Gal, 2015].
-- In this case, please do not dropout on input as BGRUs handle the input with
-- its own dropouts. First, try 0.25 for p as Gal (2016) suggested,
-- presumably, because of summations of two parts in GRUs connections.
------------------------------------------------------------------------
assert(not nn.LSTM, "update nnx package : luarocks install nnx")
local LSTM, parent = torch.class('nn.LSTM', 'nn.AbstractRecurrent')
function LSTM:__init(inputSize, outputSize, rho, cell2gate, p, mono)
parent.__init(self, rho or 9999)
self.p = p or 0
if p and p ~= 0 then
assert(nn.Dropout(p,false,false,true).lazy, 'only work with Lazy Dropout!')
end
self.mono = mono or false
self.inputSize = inputSize
self.outputSize = outputSize or inputSize
-- build the model
self.cell2gate = (cell2gate == nil) and true or cell2gate
self.recurrentModule = self:buildModel()
-- make it work with nn.Container
self.modules[1] = self.recurrentModule
self.sharedClones[1] = self.recurrentModule
-- for output(0), cell(0) and gradCell(T)
self.zeroTensor = torch.Tensor()
self.cells = {}
self.gradCells = {}
end
-------------------------- factory methods -----------------------------
function LSTM:buildGate()
-- Note : gate expects an input table : {input, output(t-1), cell(t-1)}
local gate = nn.Sequential()
if not self.cell2gate then
gate:add(nn.NarrowTable(1,2))
end
local input2gate = nn.Sequential()
:add(nn.Dropout(self.p,false,false,true,self.mono))
:add(nn.Linear(self.inputSize, self.outputSize))
local output2gate = nn.Sequential()
:add(nn.Dropout(self.p,false,false,true,self.mono))
:add(nn.LinearNoBias(self.outputSize, self.outputSize))
local para = nn.ParallelTable()
para:add(input2gate):add(output2gate)
if self.cell2gate then
para:add(nn.CMul(self.outputSize)) -- diagonal cell to gate weight matrix
end
gate:add(para)
gate:add(nn.CAddTable())
gate:add(nn.Sigmoid())
return gate
end
function LSTM:buildInputGate()
self.inputGate = self:buildGate()
return self.inputGate
end
function LSTM:buildForgetGate()
self.forgetGate = self:buildGate()
return self.forgetGate
end
function LSTM:buildHidden()
local hidden = nn.Sequential()
-- input is {input, output(t-1), cell(t-1)}, but we only need {input, output(t-1)}
hidden:add(nn.NarrowTable(1,2))
local input2hidden = nn.Sequential()
:add(nn.Dropout(self.p,false,false,true,self.mono))
:add(nn.Linear(self.inputSize, self.outputSize))
local output2hidden = nn.Sequential()
:add(nn.Dropout(self.p,false,false,true,self.mono))
:add(nn.LinearNoBias(self.outputSize, self.outputSize))
local para = nn.ParallelTable()
para:add(input2hidden):add(output2hidden)
hidden:add(para)
hidden:add(nn.CAddTable())
hidden:add(nn.Tanh())
self.hiddenLayer = hidden
return hidden
end
function LSTM:buildCell()
-- build
self.inputGate = self:buildInputGate()
self.forgetGate = self:buildForgetGate()
self.hiddenLayer = self:buildHidden()
-- forget = forgetGate{input, output(t-1), cell(t-1)} * cell(t-1)
local forget = nn.Sequential()
local concat = nn.ConcatTable()
concat:add(self.forgetGate):add(nn.SelectTable(3))
forget:add(concat)
forget:add(nn.CMulTable())
-- input = inputGate{input, output(t-1), cell(t-1)} * hiddenLayer{input, output(t-1), cell(t-1)}
local input = nn.Sequential()
local concat2 = nn.ConcatTable()
concat2:add(self.inputGate):add(self.hiddenLayer)
input:add(concat2)
input:add(nn.CMulTable())
-- cell(t) = forget + input
local cell = nn.Sequential()
local concat3 = nn.ConcatTable()
concat3:add(forget):add(input)
cell:add(concat3)
cell:add(nn.CAddTable())
self.cellLayer = cell
return cell
end
function LSTM:buildOutputGate()
self.outputGate = self:buildGate()
return self.outputGate
end
-- cell(t) = cellLayer{input, output(t-1), cell(t-1)}
-- output(t) = outputGate{input, output(t-1), cell(t)}*tanh(cell(t))
-- output of Model is table : {output(t), cell(t)}
function LSTM:buildModel()
-- build components
self.cellLayer = self:buildCell()
self.outputGate = self:buildOutputGate()
-- assemble
local concat = nn.ConcatTable()
concat:add(nn.NarrowTable(1,2)):add(self.cellLayer)
local model = nn.Sequential()
model:add(concat)
-- output of concat is {{input, output}, cell(t)},
-- so flatten to {input, output, cell(t)}
model:add(nn.FlattenTable())
local cellAct = nn.Sequential()
cellAct:add(nn.SelectTable(3))
cellAct:add(nn.Tanh())
local concat3 = nn.ConcatTable()
concat3:add(self.outputGate):add(cellAct)
local output = nn.Sequential()
output:add(concat3)
output:add(nn.CMulTable())
-- we want the model to output : {output(t), cell(t)}
local concat4 = nn.ConcatTable()
concat4:add(output):add(nn.SelectTable(3))
model:add(concat4)
return model
end
function LSTM:getHiddenState(step, input)
step = step == nil and (self.step - 1) or (step < 0) and (self.step - step - 1) or step
local prevOutput, prevCell
if step == 0 then
prevOutput = self.userPrevOutput or self.outputs[step] or self.zeroTensor
prevCell = self.userPrevCell or self.cells[step] or self.zeroTensor
if input then
if input:dim() == 2 then
self.zeroTensor:resize(input:size(1), self.outputSize):zero()
else
self.zeroTensor:resize(self.outputSize):zero()
end
end
else
-- previous output and cell of this module
prevOutput = self.outputs[step]
prevCell = self.cells[step]
end
return {prevOutput, prevCell}
end
function LSTM:setHiddenState(step, hiddenState)
step = step == nil and (self.step - 1) or (step < 0) and (self.step - step - 1) or step
assert(torch.type(hiddenState) == 'table')
assert(#hiddenState == 2)
-- previous output of this module
self.outputs[step] = hiddenState[1]
self.cells[step] = hiddenState[2]
end
------------------------- forward backward -----------------------------
function LSTM:updateOutput(input)
local prevOutput, prevCell = unpack(self:getHiddenState(self.step-1, input))
-- output(t), cell(t) = lstm{input(t), output(t-1), cell(t-1)}
local output, cell
if self.train ~= false then
self:recycle()
local recurrentModule = self:getStepModule(self.step)
-- the actual forward propagation
output, cell = unpack(recurrentModule:updateOutput{input, prevOutput, prevCell})
else
output, cell = unpack(self.recurrentModule:updateOutput{input, prevOutput, prevCell})
end
self.outputs[self.step] = output
self.cells[self.step] = cell
self.output = output
self.cell = cell
self.step = self.step + 1
self.gradPrevOutput = nil
self.updateGradInputStep = nil
self.accGradParametersStep = nil
-- note that we don't return the cell, just the output
return self.output
end
function LSTM:getGradHiddenState(step)
self.gradOutputs = self.gradOutputs or {}
self.gradCells = self.gradCells or {}
local _step = self.updateGradInputStep or self.step
step = step == nil and (_step - 1) or (step < 0) and (_step - step - 1) or step
local gradOutput, gradCell
if step == self.step-1 then
gradOutput = self.userNextGradOutput or self.gradOutputs[step] or self.zeroTensor
gradCell = self.userNextGradCell or self.gradCells[step] or self.zeroTensor
else
gradOutput = self.gradOutputs[step]
gradCell = self.gradCells[step]
end
return {gradOutput, gradCell}
end
function LSTM:setGradHiddenState(step, gradHiddenState)
local _step = self.updateGradInputStep or self.step
step = step == nil and (_step - 1) or (step < 0) and (_step - step - 1) or step
assert(torch.type(gradHiddenState) == 'table')
assert(#gradHiddenState == 2)
self.gradOutputs[step] = gradHiddenState[1]
self.gradCells[step] = gradHiddenState[2]
end
function LSTM:_updateGradInput(input, gradOutput)
assert(self.step > 1, "expecting at least one updateOutput")
local step = self.updateGradInputStep - 1
assert(step >= 1)
-- set the output/gradOutput states of current Module
local recurrentModule = self:getStepModule(step)
-- backward propagate through this step
local gradHiddenState = self:getGradHiddenState(step)
local _gradOutput, gradCell = gradHiddenState[1], gradHiddenState[2]
assert(_gradOutput and gradCell)
self._gradOutputs[step] = nn.rnn.recursiveCopy(self._gradOutputs[step], _gradOutput)
nn.rnn.recursiveAdd(self._gradOutputs[step], gradOutput)
gradOutput = self._gradOutputs[step]
local inputTable = self:getHiddenState(step-1)
table.insert(inputTable, 1, input)
local gradInputTable = recurrentModule:updateGradInput(inputTable, {gradOutput, gradCell})
local _ = require 'moses'
self:setGradHiddenState(step-1, _.slice(gradInputTable, 2, 3))
return gradInputTable[1]
end
function LSTM:_accGradParameters(input, gradOutput, scale)
local step = self.accGradParametersStep - 1
assert(step >= 1)
-- set the output/gradOutput states of current Module
local recurrentModule = self:getStepModule(step)
-- backward propagate through this step
local inputTable = self:getHiddenState(step-1)
table.insert(inputTable, 1, input)
local gradOutputTable = self:getGradHiddenState(step)
gradOutputTable[1] = self._gradOutputs[step] or gradOutputTable[1]
recurrentModule:accGradParameters(inputTable, gradOutputTable, scale)
end
function LSTM:clearState()
self.zeroTensor:set()
if self.userPrevOutput then self.userPrevOutput:set() end
if self.userPrevCell then self.userPrevCell:set() end
if self.userGradPrevOutput then self.userGradPrevOutput:set() end
if self.userGradPrevCell then self.userGradPrevCell:set() end
return parent.clearState(self)
end
function LSTM:type(type, ...)
if type then
self:forget()
self:clearState()
self.zeroTensor = self.zeroTensor:type(type)
end
return parent.type(self, type, ...)
end