forked from Element-Research/rnn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrecurrent-language-model.lua
318 lines (265 loc) · 10.7 KB
/
recurrent-language-model.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
require 'paths'
require 'rnn'
require 'optim'
local dl = require 'dataload'
version = 2
--[[ command line arguments ]]--
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train a Language Model on PennTreeBank dataset using RNN or LSTM or GRU')
cmd:text('Example:')
cmd:text('th recurrent-language-model.lua --cuda --device 2 --progress --cutoff 4 --seqlen 10')
cmd:text("th recurrent-language-model.lua --progress --cuda --lstm --seqlen 20 --hiddensize '{200,200}' --batchsize 20 --startlr 1 --cutoff 5 --maxepoch 13 --schedule '{[5]=0.5,[6]=0.25,[7]=0.125,[8]=0.0625,[9]=0.03125,[10]=0.015625,[11]=0.0078125,[12]=0.00390625}'")
cmd:text("th recurrent-language-model.lua --progress --cuda --lstm --seqlen 35 --uniform 0.04 --hiddensize '{1500,1500}' --batchsize 20 --startlr 1 --cutoff 10 --maxepoch 50 --schedule '{[15]=0.87,[16]=0.76,[17]=0.66,[18]=0.54,[19]=0.43,[20]=0.32,[21]=0.21,[22]=0.10}' -dropout 0.65")
cmd:text('Options:')
-- training
cmd:option('--startlr', 0.05, 'learning rate at t=0')
cmd:option('--minlr', 0.00001, 'minimum learning rate')
cmd:option('--saturate', 400, 'epoch at which linear decayed LR will reach minlr')
cmd:option('--schedule', '', 'learning rate schedule. e.g. {[5] = 0.004, [6] = 0.001}')
cmd:option('--momentum', 0.9, 'momentum')
cmd:option('--adam', false, 'use ADAM instead of SGD as optimizer')
cmd:option('--adamconfig', '{0, 0.999}', 'ADAM hyperparameters beta1 and beta2')
cmd:option('--maxnormout', -1, 'max l2-norm of each layer\'s output neuron weights')
cmd:option('--cutoff', -1, 'max l2-norm of concatenation of all gradParam tensors')
cmd:option('--batchSize', 32, 'number of examples per batch')
cmd:option('--cuda', false, 'use CUDA')
cmd:option('--device', 1, 'sets the device (GPU) to use')
cmd:option('--maxepoch', 1000, 'maximum number of epochs to run')
cmd:option('--earlystop', 50, 'maximum number of epochs to wait to find a better local minima for early-stopping')
cmd:option('--progress', false, 'print progress bar')
cmd:option('--silent', false, 'don\'t print anything to stdout')
cmd:option('--uniform', 0.1, 'initialize parameters using uniform distribution between -uniform and uniform. -1 means default initialization')
-- rnn layer
cmd:option('--lstm', false, 'use Long Short Term Memory (nn.LSTM instead of nn.Recurrent)')
cmd:option('--bn', false, 'use batch normalization. Only supported with --lstm')
cmd:option('--gru', false, 'use Gated Recurrent Units (nn.GRU instead of nn.Recurrent)')
cmd:option('--mfru', false, 'use Multi-function Recurrent Unit (nn.MuFuRu instead of nn.Recurrent)')
cmd:option('--seqlen', 5, 'sequence length : back-propagate through time (BPTT) for this many time-steps')
cmd:option('--inputsize', -1, 'size of lookup table embeddings. -1 defaults to hiddensize[1]')
cmd:option('--hiddensize', '{200}', 'number of hidden units used at output of each recurrent layer. When more than one is specified, RNN/LSTMs/GRUs are stacked')
cmd:option('--dropout', 0, 'apply dropout with this probability after each rnn layer. dropout <= 0 disables it.')
-- data
cmd:option('--batchsize', 32, 'number of examples per batch')
cmd:option('--trainsize', -1, 'number of train examples seen between each epoch')
cmd:option('--validsize', -1, 'number of valid examples used for early stopping and cross-validation')
cmd:option('--savepath', paths.concat(dl.SAVE_PATH, 'rnnlm'), 'path to directory where experiment log (includes model) will be saved')
cmd:option('--id', '', 'id string of this experiment (used to name output file) (defaults to a unique id)')
cmd:text()
local opt = cmd:parse(arg or {})
opt.hiddensize = loadstring(" return "..opt.hiddensize)()
opt.schedule = loadstring(" return "..opt.schedule)()
opt.adamconfig = loadstring(" return "..opt.adamconfig)()
opt.inputsize = opt.inputsize == -1 and opt.hiddensize[1] or opt.inputsize
if not opt.silent then
table.print(opt)
end
opt.id = opt.id == '' and ('ptb' .. ':' .. dl.uniqueid()) or opt.id
if opt.cuda then
require 'cunn'
cutorch.setDevice(opt.device)
end
--[[ data set ]]--
local trainset, validset, testset = dl.loadPTB({opt.batchsize,1,1})
if not opt.silent then
print("Vocabulary size : "..#trainset.ivocab)
print("Train set split into "..opt.batchsize.." sequences of length "..trainset:size())
end
--[[ language model ]]--
local lm = nn.Sequential()
-- input layer (i.e. word embedding space)
local lookup = nn.LookupTable(#trainset.ivocab, opt.inputsize)
lookup.maxOutNorm = -1 -- prevent weird maxnormout behaviour
lm:add(lookup) -- input is seqlen x batchsize
if opt.dropout > 0 and not opt.gru then -- gru has a dropout option
lm:add(nn.Dropout(opt.dropout))
end
lm:add(nn.SplitTable(1)) -- tensor to table of tensors
-- rnn layers
local stepmodule = nn.Sequential() -- applied at each time-step
local inputsize = opt.inputsize
for i,hiddensize in ipairs(opt.hiddensize) do
local rnn
if opt.gru then -- Gated Recurrent Units
rnn = nn.GRU(inputsize, hiddensize, nil, opt.dropout/2)
elseif opt.lstm then -- Long Short Term Memory units
require 'nngraph'
nn.FastLSTM.usenngraph = true -- faster
nn.FastLSTM.bn = opt.bn
rnn = nn.FastLSTM(inputsize, hiddensize)
elseif opt.mfru then -- Multi Function Recurrent Unit
rnn = nn.MuFuRu(inputsize, hiddensize)
else -- simple recurrent neural network
local rm = nn.Sequential() -- input is {x[t], h[t-1]}
:add(nn.ParallelTable()
:add(i==1 and nn.Identity() or nn.Linear(inputsize, hiddensize)) -- input layer
:add(nn.Linear(hiddensize, hiddensize))) -- recurrent layer
:add(nn.CAddTable()) -- merge
:add(nn.Sigmoid()) -- transfer
rnn = nn.Recurrence(rm, hiddensize, 1)
end
stepmodule:add(rnn)
if opt.dropout > 0 then
stepmodule:add(nn.Dropout(opt.dropout))
end
inputsize = hiddensize
end
-- output layer
stepmodule:add(nn.Linear(inputsize, #trainset.ivocab))
stepmodule:add(nn.LogSoftMax())
-- encapsulate stepmodule into a Sequencer
lm:add(nn.Sequencer(stepmodule))
-- remember previous state between batches
lm:remember((opt.lstm or opt.gru or opt.mfru) and 'both' or 'eval')
if not opt.silent then
print"Language Model:"
print(lm)
end
if opt.uniform > 0 then
for k,param in ipairs(lm:parameters()) do
param:uniform(-opt.uniform, opt.uniform)
end
end
--[[ loss function ]]--
local crit = nn.ClassNLLCriterion()
-- target is also seqlen x batchsize.
local targetmodule = nn.SplitTable(1)
if opt.cuda then
targetmodule = nn.Sequential()
:add(nn.Convert())
:add(targetmodule)
end
local criterion = nn.SequencerCriterion(crit)
--[[ CUDA ]]--
if opt.cuda then
lm:cuda()
criterion:cuda()
targetmodule:cuda()
end
--[[ experiment log ]]--
-- is saved to file every time a new validation minima is found
local xplog = {}
xplog.opt = opt -- save all hyper-parameters and such
xplog.dataset = 'PennTreeBank'
xplog.vocab = trainset.vocab
-- will only serialize params
xplog.model = nn.Serial(lm)
xplog.model:mediumSerial()
xplog.criterion = criterion
xplog.targetmodule = targetmodule
-- keep a log of NLL for each epoch
xplog.trainppl = {}
xplog.valppl = {}
-- will be used for early-stopping
xplog.minvalppl = 99999999
xplog.epoch = 0
local params, grad_params = lm:getParameters()
local adamconfig = {
beta1 = opt.adamconfig[1],
beta2 = opt.adamconfig[2],
}
local ntrial = 0
paths.mkdir(opt.savepath)
local epoch = 1
opt.lr = opt.startlr
opt.trainsize = opt.trainsize == -1 and trainset:size() or opt.trainsize
opt.validsize = opt.validsize == -1 and validset:size() or opt.validsize
while opt.maxepoch <= 0 or epoch <= opt.maxepoch do
print("")
print("Epoch #"..epoch.." :")
-- 1. training
sgdconfig = {
learningRate = opt.lr,
momentum = opt.momentum
}
local a = torch.Timer()
lm:training()
local sumErr = 0
-- local sumErr = 0
for i, inputs, targets in trainset:subiter(opt.seqlen, opt.trainsize) do
local curTargets = targetmodule:forward(targets)
local curInputs = inputs
local function feval(x)
if x ~= params then
params:copy(x)
end
grad_params:zero()
-- forward
local outputs = lm:forward(curInputs)
local err = criterion:forward(outputs, curTargets)
sumErr = sumErr + err
-- backward
local gradOutputs = criterion:backward(outputs, curTargets)
lm:zeroGradParameters()
lm:backward(curInputs, gradOutputs)
-- gradient clipping
if opt.cutoff > 0 then
local norm = lm:gradParamClip(opt.cutoff) -- affects gradParams
opt.meanNorm = opt.meanNorm and (opt.meanNorm*0.9 + norm*0.1) or norm
end
return err, grad_params
end
if opt.adam then
local _, loss = optim.adam(feval, params, adamconfig)
else
local _, loss = optim.sgd(feval, params, sgdconfig)
end
if opt.progress then
xlua.progress(math.min(i + opt.seqlen, opt.trainsize), opt.trainsize)
end
if i % 1000 == 0 then
collectgarbage()
end
end
-- learning rate decay
if opt.schedule then
opt.lr = opt.schedule[epoch] or opt.lr
else
opt.lr = opt.lr + (opt.minlr - opt.startlr)/opt.saturate
end
opt.lr = math.max(opt.minlr, opt.lr)
if not opt.silent then
print("learning rate", opt.lr)
if opt.meanNorm then
print("mean gradParam norm", opt.meanNorm)
end
end
if cutorch then cutorch.synchronize() end
local speed = a:time().real/opt.trainsize
print(string.format("Speed : %f sec/batch ", speed))
local ppl = torch.exp(sumErr/opt.trainsize)
print("Training PPL : "..ppl)
xplog.trainppl[epoch] = ppl
-- 2. cross-validation
lm:evaluate()
local sumErr = 0
for i, inputs, targets in validset:subiter(opt.seqlen, opt.validsize) do
targets = targetmodule:forward(targets)
local outputs = lm:forward(inputs)
local err = criterion:forward(outputs, targets)
sumErr = sumErr + err
end
local ppl = torch.exp(sumErr/opt.validsize)
-- Perplexity = exp( sum ( NLL ) / #w)
print("Validation PPL : "..ppl)
xplog.valppl[epoch] = ppl
ntrial = ntrial + 1
-- early-stopping
if ppl < xplog.minvalppl then
-- save best version of model
xplog.minvalppl = ppl
xplog.epoch = epoch
local filename = paths.concat(opt.savepath, opt.id..'.t7')
print("Found new minima. Saving to "..filename)
torch.save(filename, xplog)
ntrial = 0
elseif ntrial >= opt.earlystop then
print("No new minima found after "..ntrial.." epochs.")
print("Stopping experiment.")
break
end
collectgarbage()
epoch = epoch + 1
end
print("Evaluate model using : ")
print("th scripts/evaluate-rnnlm.lua --xplogpath "..paths.concat(opt.savepath, opt.id..'.t7')..(opt.cuda and ' --cuda' or ''))