From f4bc4e27ffac5526fe5cabf14d646b3e39216dca Mon Sep 17 00:00:00 2001 From: DiwakarBasnet <61117698+DiwakarBasnet@users.noreply.github.com> Date: Sat, 10 Aug 2024 17:51:45 +0545 Subject: [PATCH 1/4] Updated video classification using ViViT model --- ...ivit_Fine_tuned_Video_Classification.ipynb | 6444 +++++++++++++++++ 1 file changed, 6444 insertions(+) create mode 100644 notebooks/Unit 7 - Video and Video Processing/Vivit_Fine_tuned_Video_Classification.ipynb diff --git a/notebooks/Unit 7 - Video and Video Processing/Vivit_Fine_tuned_Video_Classification.ipynb b/notebooks/Unit 7 - Video and Video Processing/Vivit_Fine_tuned_Video_Classification.ipynb new file mode 100644 index 000000000..a5f586dd2 --- /dev/null +++ b/notebooks/Unit 7 - Video and Video Processing/Vivit_Fine_tuned_Video_Classification.ipynb @@ -0,0 +1,6444 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "4fe1a498f90e4b37b1b3b4ad83cf91b2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "VBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a885db853b01424bae352ef9003d12e2", + "IPY_MODEL_cefb31705ae34a6d9053d0dcd909fdfb", + "IPY_MODEL_c811c761a0cb4f37882233eacdae6a13", + "IPY_MODEL_d9380b3e2802443ca7c15c54448de1af" + ], + "layout": "IPY_MODEL_306b38aa31044fe2a9e37f0b8997a833" + } + }, + "d190cb16248641bd92b8fbe0820c98b4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_74532c0fb8f642da870af9adccdb1e53", + "placeholder": "​", + "style": "IPY_MODEL_299e031dbc564e269e9be5ea3bc1be18", + "value": "

Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
" + } + }, + "20d93cfe8dcf43cfa0d2e7f7a9ea2afc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "PasswordModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "PasswordModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "PasswordView", + "continuous_update": true, + "description": "Token:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_e5082f35ff3a4ea984d856abb2516c8e", + "placeholder": "​", + "style": "IPY_MODEL_bcb81a9e63f04c7fb5b8f7ca53e6b2d1", + "value": "" + } + }, + "6f2a4f367bcd42c6a500ab61a79e705c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "CheckboxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "CheckboxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "CheckboxView", + "description": "Add token as git credential?", + "description_tooltip": null, + "disabled": false, + "indent": true, + "layout": "IPY_MODEL_4e4204bc814a4185b95aed66c8c07a3c", + "style": "IPY_MODEL_5625e6e3bab04879860b6421012051d6", + "value": true + } + }, + "7e9f00ae7acf4e28932669e044627c49": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "Login", + "disabled": false, + "icon": "", + "layout": "IPY_MODEL_f3f9da4cff924e85aab8886c8712952f", + "style": "IPY_MODEL_bbe7798a1cc6491688e2260bcf1600eb", + "tooltip": "" + } + }, + "9b1c4e5b3d1145c59e4f80e21d5e1815": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_11a99a42ad2c4602995715c7944b4fb9", + "placeholder": "​", + "style": "IPY_MODEL_c357a680046c49529bb8c2c35758d135", + "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. " + } + }, + "306b38aa31044fe2a9e37f0b8997a833": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": "center", + "align_self": null, + "border": null, + "bottom": null, + "display": "flex", + "flex": null, + "flex_flow": "column", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "50%" + } + }, + "74532c0fb8f642da870af9adccdb1e53": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "299e031dbc564e269e9be5ea3bc1be18": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e5082f35ff3a4ea984d856abb2516c8e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bcb81a9e63f04c7fb5b8f7ca53e6b2d1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4e4204bc814a4185b95aed66c8c07a3c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5625e6e3bab04879860b6421012051d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f3f9da4cff924e85aab8886c8712952f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bbe7798a1cc6491688e2260bcf1600eb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "11a99a42ad2c4602995715c7944b4fb9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c357a680046c49529bb8c2c35758d135": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "eb51a4be61ee4e939929f8627a416cd2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f006d7d59678475ca190801e67fa05e3", + "placeholder": "​", + "style": "IPY_MODEL_d9ab970258764074adff455c6262f527", + "value": "Connecting..." + } + }, + "f006d7d59678475ca190801e67fa05e3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d9ab970258764074adff455c6262f527": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a885db853b01424bae352ef9003d12e2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7f2937adfa3644fdaa7b712bb13d8ae6", + "placeholder": "​", + "style": "IPY_MODEL_73ec36b0fc2e47c0bbdbf67bb26de2b2", + "value": "Token is valid (permission: write)." + } + }, + "cefb31705ae34a6d9053d0dcd909fdfb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_14e56564858d448485594597305e10b5", + "placeholder": "​", + "style": "IPY_MODEL_ce823b9584d6413493e10580e56d0c6c", + "value": "Your token has been saved in your configured git credential helpers (store)." + } + }, + "c811c761a0cb4f37882233eacdae6a13": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a059a901f5c54557bdd7e27f5ef08156", + "placeholder": "​", + "style": "IPY_MODEL_431f4b2941ff414a90bc45c8ba485ae0", + "value": "Your token has been saved to /root/.cache/huggingface/token" + } + }, + "d9380b3e2802443ca7c15c54448de1af": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_43ad112b85fc4a658d588106bbc376ba", + "placeholder": "​", + "style": "IPY_MODEL_2f6e013db6074780afacfe3f3bd0dbab", + "value": "Login successful" + } + }, + "7f2937adfa3644fdaa7b712bb13d8ae6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "73ec36b0fc2e47c0bbdbf67bb26de2b2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "14e56564858d448485594597305e10b5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ce823b9584d6413493e10580e56d0c6c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a059a901f5c54557bdd7e27f5ef08156": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "431f4b2941ff414a90bc45c8ba485ae0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "43ad112b85fc4a658d588106bbc376ba": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2f6e013db6074780afacfe3f3bd0dbab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "56a33293726f4b9d9966bf95bd39ec97": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_11d0f725536d445681fd68e103c3b591", + "IPY_MODEL_6b93d4efc0054ee7a2473b08528225d7", + "IPY_MODEL_9e613036ab644fe1a140d653a659cc48" + ], + "layout": "IPY_MODEL_4a99aacf0b6646ee897c2a9ccb7928ab" + } + }, + "11d0f725536d445681fd68e103c3b591": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eadd9a9fc65d4c019fe97c149bcc4b0f", + "placeholder": "​", + "style": "IPY_MODEL_f9cf1b055252487fa8a211a270826341", + "value": "UCF101_subset.tar.gz: 100%" + } + }, + "6b93d4efc0054ee7a2473b08528225d7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9fc047267e6e4f78898f2ae527025462", + "max": 171386880, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5cb65093f084414d853f322840b02f15", + "value": 171386880 + } + }, + "9e613036ab644fe1a140d653a659cc48": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1cd87b02cafd45a58862aea78c82bb85", + "placeholder": "​", + "style": "IPY_MODEL_0b4265a9d29b4a7dbf2e0b65ca5c939e", + "value": " 171M/171M [00:00<00:00, 236MB/s]" + } + }, + "4a99aacf0b6646ee897c2a9ccb7928ab": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eadd9a9fc65d4c019fe97c149bcc4b0f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f9cf1b055252487fa8a211a270826341": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9fc047267e6e4f78898f2ae527025462": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5cb65093f084414d853f322840b02f15": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1cd87b02cafd45a58862aea78c82bb85": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0b4265a9d29b4a7dbf2e0b65ca5c939e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "836f624dd78d461db56d3585c168cf54": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8dd1b32c4ce14e448c14dcef9dafab52", + "IPY_MODEL_e8cbaf363f6448dd8de3a90482a0b33c", + "IPY_MODEL_b9c6dc8131444ee8992c6a8faf13537b" + ], + "layout": "IPY_MODEL_108ebe4a1f6c49dfb6c95d5057e8c535" + } + }, + "8dd1b32c4ce14e448c14dcef9dafab52": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_471ba97f29a94764a9c04c24beca2a78", + "placeholder": "​", + "style": "IPY_MODEL_0fafb678c9254969b85eae253dffb1ea", + "value": "" + } + }, + "e8cbaf363f6448dd8de3a90482a0b33c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_20958f2ff2204f6cb32793fe2b56acbe", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2a6ddc49d0aa4493809d1d7bcfa4eafd", + "value": 0 + } + }, + "b9c6dc8131444ee8992c6a8faf13537b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_95e6d2c093ca48b8b7d01de9f8c6a27f", + "placeholder": "​", + "style": "IPY_MODEL_1b65bd27764e4deeb51544aa615d83cd", + "value": " 0/0 [00:00<?, ?it/s]" + } + }, + "108ebe4a1f6c49dfb6c95d5057e8c535": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "471ba97f29a94764a9c04c24beca2a78": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0fafb678c9254969b85eae253dffb1ea": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "20958f2ff2204f6cb32793fe2b56acbe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "2a6ddc49d0aa4493809d1d7bcfa4eafd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "95e6d2c093ca48b8b7d01de9f8c6a27f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1b65bd27764e4deeb51544aa615d83cd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "64ba7ef2c05c44989286a865655a6084": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d208496e6a754b2f80859bc9304c577b", + "IPY_MODEL_39532844772a48d89035474427fa350f", + "IPY_MODEL_ed6ee647dcd748ff90781fff5e4ffba6" + ], + "layout": "IPY_MODEL_536a4e9aa27841f4a1847e7bb6e3bf21" + } + }, + "d208496e6a754b2f80859bc9304c577b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2d69a060f8c545ab958c6f332b2e2e63", + "placeholder": "​", + "style": "IPY_MODEL_08a02ac9b72a4956830d76db5f04b2e1", + "value": "preprocessor_config.json: 100%" + } + }, + "39532844772a48d89035474427fa350f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_96461ef7ac9e4c0a8bbb8d3d30255129", + "max": 401, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f093379e44494488a5f23028f20cdffa", + "value": 401 + } + }, + "ed6ee647dcd748ff90781fff5e4ffba6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_53fd74a285fe469d9e1c7914db701171", + "placeholder": "​", + "style": "IPY_MODEL_7c79bc4ab94b4420b8d22ba9dbcb5605", + "value": " 401/401 [00:00<00:00, 25.1kB/s]" + } + }, + "536a4e9aa27841f4a1847e7bb6e3bf21": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2d69a060f8c545ab958c6f332b2e2e63": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "08a02ac9b72a4956830d76db5f04b2e1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "96461ef7ac9e4c0a8bbb8d3d30255129": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f093379e44494488a5f23028f20cdffa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "53fd74a285fe469d9e1c7914db701171": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7c79bc4ab94b4420b8d22ba9dbcb5605": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "96222d64bdb744e19ba4ed991ada722c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_28617d68b3694705b668604c5291029f", + "IPY_MODEL_6b579dc83537467bb5165a8f394780b2", + "IPY_MODEL_a0e2739b265240adb766764d26e506bf" + ], + "layout": "IPY_MODEL_c3296c91f04349038968a77b06a3474e" + } + }, + "28617d68b3694705b668604c5291029f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dd2246d8ffa148749d8c11a087993fcb", + "placeholder": "​", + "style": "IPY_MODEL_fc3baff8e34a4cec890743488f3d3590", + "value": "config.json: 100%" + } + }, + "6b579dc83537467bb5165a8f394780b2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_00c32bab54c64717bbe1a069a243b843", + "max": 18554, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_437fbf5c89d6426bb5723c71a9ef328e", + "value": 18554 + } + }, + "a0e2739b265240adb766764d26e506bf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_48a4c5e08de24927bb3a00d00fb8d0a1", + "placeholder": "​", + "style": "IPY_MODEL_055b1fe419d347ffa07affa9d2b7b86e", + "value": " 18.6k/18.6k [00:00<00:00, 1.36MB/s]" + } + }, + "c3296c91f04349038968a77b06a3474e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dd2246d8ffa148749d8c11a087993fcb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fc3baff8e34a4cec890743488f3d3590": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "00c32bab54c64717bbe1a069a243b843": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "437fbf5c89d6426bb5723c71a9ef328e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "48a4c5e08de24927bb3a00d00fb8d0a1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "055b1fe419d347ffa07affa9d2b7b86e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c64c43f93c3d40b9a558b27b6e7124c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_11f0aa2dd67b4a4f80f6a47262aa20b6", + "IPY_MODEL_5a3a329618fb4ece9c84bc457892baab", + "IPY_MODEL_b35322acd10142db80a567c5ec26997b" + ], + "layout": "IPY_MODEL_1bd71be7be0c4382a0e38ce01f201b71" + } + }, + "11f0aa2dd67b4a4f80f6a47262aa20b6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6067f54a25554550bb70853ae2273e41", + "placeholder": "​", + "style": "IPY_MODEL_1d2359bb42514f52be5e56102e4d3a47", + "value": "pytorch_model.bin: 100%" + } + }, + "5a3a329618fb4ece9c84bc457892baab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6ebc9b88aea14a03a8cb2a58a2b0bc9e", + "max": 355881581, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2a330460df4d40e8b27f6120ad350d9f", + "value": 355881581 + } + }, + "b35322acd10142db80a567c5ec26997b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c0ad1cf9a51d420fb8211a7a02f98e63", + "placeholder": "​", + "style": "IPY_MODEL_f77a3ffc0420430c93dc897b9b2d0353", + "value": " 356M/356M [00:01<00:00, 275MB/s]" + } + }, + "1bd71be7be0c4382a0e38ce01f201b71": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6067f54a25554550bb70853ae2273e41": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1d2359bb42514f52be5e56102e4d3a47": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6ebc9b88aea14a03a8cb2a58a2b0bc9e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2a330460df4d40e8b27f6120ad350d9f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c0ad1cf9a51d420fb8211a7a02f98e63": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f77a3ffc0420430c93dc897b9b2d0353": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ba73a0b4b78342e195c8d56188870af0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c062c3b3f62f4ac8b2c50741ef14ccbe", + "IPY_MODEL_d24fe51b6fc4405eb38d689f4547e62f", + "IPY_MODEL_52cc999f539f43c8876b54c4644c1cec" + ], + "layout": "IPY_MODEL_e577cfe812e440a8a288f7b1a1c1520c" + } + }, + "c062c3b3f62f4ac8b2c50741ef14ccbe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f39e1157966946608e08a799c8ba1776", + "placeholder": "​", + "style": "IPY_MODEL_e259a5c2421646a390baf8c5ea9a1b26", + "value": "events.out.tfevents.1723289519.c82016455c61.1590.3: 100%" + } + }, + "d24fe51b6fc4405eb38d689f4547e62f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fe0d33c17e8b4016bd364c64d9e2255a", + "max": 24912, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f1e8b3d5970241a58e6fb31f3268725a", + "value": 24912 + } + }, + "52cc999f539f43c8876b54c4644c1cec": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f855f923f187460b84d512869a8683c7", + "placeholder": "​", + "style": "IPY_MODEL_92f7179d482b472cb1ab16ee83b0295a", + "value": " 24.9k/24.9k [00:00<00:00, 122kB/s]" + } + }, + "e577cfe812e440a8a288f7b1a1c1520c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f39e1157966946608e08a799c8ba1776": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e259a5c2421646a390baf8c5ea9a1b26": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fe0d33c17e8b4016bd364c64d9e2255a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f1e8b3d5970241a58e6fb31f3268725a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f855f923f187460b84d512869a8683c7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "92f7179d482b472cb1ab16ee83b0295a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c97dd9d0dcf44d68b7cc6def43b9516b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6e5e6fd19af34048a4ca80f4b6a2fe5b", + "IPY_MODEL_8bb9c14a17044ffe87ce6b65a9295bc8", + "IPY_MODEL_c39c477555be472d979ae246eedb9c5f" + ], + "layout": "IPY_MODEL_c6a45a8269c44af48f6ce851b5c5c9e0" + } + }, + "6e5e6fd19af34048a4ca80f4b6a2fe5b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1f1a524105664da3ac4d672dc81d0567", + "placeholder": "​", + "style": "IPY_MODEL_790beefea6a4491a9337b8295f8eb712", + "value": "model.safetensors: 100%" + } + }, + "8bb9c14a17044ffe87ce6b65a9295bc8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a1f91db399f147ffa151d894ef4d1000", + "max": 354639992, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_aa1bedb37b5f4be7b41e16b389220a43", + "value": 354639992 + } + }, + "c39c477555be472d979ae246eedb9c5f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_875b0b523f794c7f8f225fae23a21b6b", + "placeholder": "​", + "style": "IPY_MODEL_9df124317af3485181f1330e89ffbc31", + "value": " 355M/355M [00:10<00:00, 37.9MB/s]" + } + }, + "c6a45a8269c44af48f6ce851b5c5c9e0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1f1a524105664da3ac4d672dc81d0567": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "790beefea6a4491a9337b8295f8eb712": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a1f91db399f147ffa151d894ef4d1000": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aa1bedb37b5f4be7b41e16b389220a43": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "875b0b523f794c7f8f225fae23a21b6b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9df124317af3485181f1330e89ffbc31": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9cd2ebbdd3274ed89fb438433c345f11": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d244bc7e15914904ad7781c3eea0185e", + "IPY_MODEL_4f61773e6d38431b8d1e74c36b885ac8", + "IPY_MODEL_2d3dfcf4d2ac47ba875577ed03f2aee2" + ], + "layout": "IPY_MODEL_c964cf0d5fae4839957134ffb3d36946" + } + }, + "d244bc7e15914904ad7781c3eea0185e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_144fcc757bfc463f860298bae09bc306", + "placeholder": "​", + "style": "IPY_MODEL_3799cbb9a1a94de59bec43c3a3a036de", + "value": "events.out.tfevents.1723289161.c82016455c61.1590.2: 100%" + } + }, + "4f61773e6d38431b8d1e74c36b885ac8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5b99ce1a407b4e68b4af17172737db53", + "max": 17028, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8f6bb4229fa7440c9c70bd5491d6a3bd", + "value": 17028 + } + }, + "2d3dfcf4d2ac47ba875577ed03f2aee2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_77ca9aac841d45bda3ac1f4ff3c0a48b", + "placeholder": "​", + "style": "IPY_MODEL_b306333e0e3c4b15b0ced069b0452605", + "value": " 17.0k/17.0k [00:00<00:00, 116kB/s]" + } + }, + "c964cf0d5fae4839957134ffb3d36946": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "144fcc757bfc463f860298bae09bc306": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3799cbb9a1a94de59bec43c3a3a036de": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5b99ce1a407b4e68b4af17172737db53": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8f6bb4229fa7440c9c70bd5491d6a3bd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "77ca9aac841d45bda3ac1f4ff3c0a48b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b306333e0e3c4b15b0ced069b0452605": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6f72ea2f36374427b02af6bba1ae73e6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb9e13d174624cfead5d52250300f27a", + "IPY_MODEL_97e9468aeb514dfd907453f653ebfe05", + "IPY_MODEL_07bc06213bfe4863bece098190dc9dbe" + ], + "layout": "IPY_MODEL_e4c3761e09a6480280f088b00a80cbd6" + } + }, + "cb9e13d174624cfead5d52250300f27a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0e91b058199944c9a81fe86b79cbdd91", + "placeholder": "​", + "style": "IPY_MODEL_4d76a5e5cb684d56a112365539295f70", + "value": "events.out.tfevents.1723290472.c82016455c61.1590.4: 100%" + } + }, + "97e9468aeb514dfd907453f653ebfe05": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c5d414f943a44ad82b0ef157d0053a1", + "max": 411, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3c8b442873ed4af1b4531cc80bfc37ab", + "value": 411 + } + }, + "07bc06213bfe4863bece098190dc9dbe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6946e469524542c7ab6c86efcd31cbdb", + "placeholder": "​", + "style": "IPY_MODEL_faab4e2a2bb64a5cb868620e32b9f806", + "value": " 411/411 [00:00<00:00, 2.13kB/s]" + } + }, + "e4c3761e09a6480280f088b00a80cbd6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0e91b058199944c9a81fe86b79cbdd91": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4d76a5e5cb684d56a112365539295f70": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c5d414f943a44ad82b0ef157d0053a1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3c8b442873ed4af1b4531cc80bfc37ab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6946e469524542c7ab6c86efcd31cbdb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "faab4e2a2bb64a5cb868620e32b9f806": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0bc2ee4841d845b28d18dbafadc99ca6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_875c797ef0fa497192224eff4e0eb232", + "IPY_MODEL_dc24ed8ff7b343adbd501e01ec2704bf", + "IPY_MODEL_d94720c230a44b50b3fbcb2fe43edaac" + ], + "layout": "IPY_MODEL_6273631d95c64f92ab11233e58f29bf7" + } + }, + "875c797ef0fa497192224eff4e0eb232": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8ab7328f473b4c2ba5ebb19723c48aba", + "placeholder": "​", + "style": "IPY_MODEL_5149e59100dd4786b7d5c13d0c9ea664", + "value": "training_args.bin: 100%" + } + }, + "dc24ed8ff7b343adbd501e01ec2704bf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_63fac523b1e4447ebf2767269f280fc1", + "max": 4731, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_bc5b8c56b3ab4b8bb24def8c8168b6f4", + "value": 4731 + } + }, + "d94720c230a44b50b3fbcb2fe43edaac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c5b1a48f0fb44fa58f88dea4c4dbd5ac", + "placeholder": "​", + "style": "IPY_MODEL_512d64b1bf2d4751a60ed8e25cb84a1a", + "value": " 4.73k/4.73k [00:00<00:00, 33.8kB/s]" + } + }, + "6273631d95c64f92ab11233e58f29bf7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8ab7328f473b4c2ba5ebb19723c48aba": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5149e59100dd4786b7d5c13d0c9ea664": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "63fac523b1e4447ebf2767269f280fc1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bc5b8c56b3ab4b8bb24def8c8168b6f4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c5b1a48f0fb44fa58f88dea4c4dbd5ac": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "512d64b1bf2d4751a60ed8e25cb84a1a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d23b159a719642f9b11d18fa0c576085": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7874fc3181b349aaa7485d8ddf11f915", + "IPY_MODEL_1ba39f95cd7443c5a25b54c3f587ec63", + "IPY_MODEL_2ea426d50bd848f1808a954293f98537" + ], + "layout": "IPY_MODEL_78e5a033fbbf409486bac54250227b67" + } + }, + "7874fc3181b349aaa7485d8ddf11f915": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0be3f39168084bcb98d23716a0eb11ee", + "placeholder": "​", + "style": "IPY_MODEL_111fe69f57c546a39ef0e79e4c1a750c", + "value": "Upload 5 LFS files: 100%" + } + }, + "1ba39f95cd7443c5a25b54c3f587ec63": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8c032de4c9974dedab4f3ff49ede4757", + "max": 5, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_60be9ae8b1b2442fb010577fdea0ac57", + "value": 5 + } + }, + "2ea426d50bd848f1808a954293f98537": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_efecf6471ebb431c87687702cbc6e49b", + "placeholder": "​", + "style": "IPY_MODEL_37545942ed5546c59ad8d01cfa1ffb84", + "value": " 5/5 [00:10<00:00, 10.20s/it]" + } + }, + "78e5a033fbbf409486bac54250227b67": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0be3f39168084bcb98d23716a0eb11ee": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "111fe69f57c546a39ef0e79e4c1a750c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8c032de4c9974dedab4f3ff49ede4757": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "60be9ae8b1b2442fb010577fdea0ac57": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "efecf6471ebb431c87687702cbc6e49b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "37545942ed5546c59ad8d01cfa1ffb84": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Fine-tuning Video Vision Transformers for Video Classification" + ], + "metadata": { + "id": "d_o0pftn5k-e" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Introduction" + ], + "metadata": { + "id": "4r9-V7wUAucR" + } + }, + { + "cell_type": "markdown", + "source": [ + "Video classification is a task in machine learning where algorithms are trained to recognize and categorize the content of videos into predefined classes or categories by analyzing the spatial and temporal information present in the video frames. The field of video classification has been dominated by deep learning models that leverage convolutional neural networks (CNNs) for a long now. However, the emergence of transformer based models has sparked a revolution across various domains, including computer vision.\n", + "\n", + "Video classification has various applications including action recognition, surveillance, content filtering, and recommendation systems. One of the transformers based algorithms developed for video classification is ViViT, which is also one of the initial successful pure transformer architecuter model for video processing and understanding.\n", + "\n", + "The Video Vision Transformer (ViViT) is like an upgraded version of Vision Transformer (ViT), but for videos instead of just images. The reason we need a separate algorithm for videos is because ViT, the one for images, only looks at each frame individually without considering how they relate to each other over time. But understanding how frames connect in a video is crucial for truly understanding its content, so we need a special algorithm, like ViViT, that can handle that temporal aspect. It has set new benchmarks for video classification accuracy. The model outperforms previous methodologies based on deep 3D convolutional networks across a variety of video classification benchmarks." + ], + "metadata": { + "id": "fh5OfYw9AxKE" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Installation" + ], + "metadata": { + "id": "JDQFEgcHdGEW" + } + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "REjcTBIYrpOn", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "984213f6-49cd-4089-ab98-747622723bc5" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/132.7 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m132.7/132.7 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.2/50.2 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.2/42.2 kB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.1/84.1 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m547.8/547.8 kB\u001b[0m \u001b[31m23.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m316.1/316.1 kB\u001b[0m \u001b[31m17.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m33.5/33.5 MB\u001b[0m \u001b[31m17.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m39.9/39.9 MB\u001b[0m \u001b[31m10.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Building wheel for pytorchvideo (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Building wheel for fvcore (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Building wheel for iopath (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "cudf-cu12 24.4.1 requires pyarrow<15.0.0a0,>=14.0.1, but you have pyarrow 17.0.0 which is incompatible.\n", + "gcsfs 2024.6.1 requires fsspec==2024.6.1, but you have fsspec 2024.5.0 which is incompatible.\n", + "ibis-framework 8.0.0 requires pyarrow<16,>=2, but you have pyarrow 17.0.0 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0m" + ] + } + ], + "source": [ + "# Install required libraries\n", + "!pip install pytorchvideo evaluate accelerate transformers -q" + ] + }, + { + "cell_type": "markdown", + "source": [ + "We will now uninstall the latest version of torchvision and depricate it to version 0.14.1 since we are going to use packages and functions in pytorchvideo that are no longer supported in new versions." + ], + "metadata": { + "id": "0hFJR3RjryTY" + } + }, + { + "cell_type": "code", + "source": [ + "!pip uninstall -y torchvision -q\n", + "!pip install torchvision==0.14.1 -q" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qjHUi8uLYkzM", + "outputId": "b2317e9a-ff24-471c-f625-07b9a68c6e9a" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.2/24.2 MB\u001b[0m \u001b[31m49.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m887.5/887.5 MB\u001b[0m \u001b[31m2.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m317.1/317.1 MB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.0/21.0 MB\u001b[0m \u001b[31m84.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m849.3/849.3 kB\u001b[0m \u001b[31m43.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m557.1/557.1 MB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "torchaudio 2.3.1+cu121 requires torch==2.3.1, but you have torch 1.13.1 which is incompatible.\n", + "torchtext 0.18.0 requires torch>=2.3.0, but you have torch 1.13.1 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0m" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Authentication" + ], + "metadata": { + "id": "Ahz4UqE5vj_R" + } + }, + { + "cell_type": "code", + "source": [ + "from huggingface_hub import notebook_login\n", + "\n", + "notebook_login()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 145, + "referenced_widgets": [ + "4fe1a498f90e4b37b1b3b4ad83cf91b2", + "d190cb16248641bd92b8fbe0820c98b4", + "20d93cfe8dcf43cfa0d2e7f7a9ea2afc", + "6f2a4f367bcd42c6a500ab61a79e705c", + "7e9f00ae7acf4e28932669e044627c49", + "9b1c4e5b3d1145c59e4f80e21d5e1815", + "306b38aa31044fe2a9e37f0b8997a833", + "74532c0fb8f642da870af9adccdb1e53", + "299e031dbc564e269e9be5ea3bc1be18", + "e5082f35ff3a4ea984d856abb2516c8e", + "bcb81a9e63f04c7fb5b8f7ca53e6b2d1", + "4e4204bc814a4185b95aed66c8c07a3c", + "5625e6e3bab04879860b6421012051d6", + "f3f9da4cff924e85aab8886c8712952f", + "bbe7798a1cc6491688e2260bcf1600eb", + "11a99a42ad2c4602995715c7944b4fb9", + "c357a680046c49529bb8c2c35758d135", + "eb51a4be61ee4e939929f8627a416cd2", + "f006d7d59678475ca190801e67fa05e3", + "d9ab970258764074adff455c6262f527", + "a885db853b01424bae352ef9003d12e2", + "cefb31705ae34a6d9053d0dcd909fdfb", + "c811c761a0cb4f37882233eacdae6a13", + "d9380b3e2802443ca7c15c54448de1af", + "7f2937adfa3644fdaa7b712bb13d8ae6", + "73ec36b0fc2e47c0bbdbf67bb26de2b2", + "14e56564858d448485594597305e10b5", + "ce823b9584d6413493e10580e56d0c6c", + "a059a901f5c54557bdd7e27f5ef08156", + "431f4b2941ff414a90bc45c8ba485ae0", + "43ad112b85fc4a658d588106bbc376ba", + "2f6e013db6074780afacfe3f3bd0dbab" + ] + }, + "id": "TGi9tQbNvssf", + "outputId": "1c100b33-3aab-40d6-e930-f41b18961fda" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "VBox(children=(HTML(value='
" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Train the model" + ], + "metadata": { + "id": "Ez6OM0aRxqcD" + } + }, + { + "cell_type": "markdown", + "source": [ + "We'll leverage Trainer from 🤗 Transformers for training the model. To instantiate a Trainer, we will need to define the training configuration and an evaluation metric. We will also use the TrainingArguments class, which contains all the attributes to configure the training. It requires an output folder name, which will be used to save the checkpoints of the model.\n", + "\n", + "Most of the training arguments are pretty self-explanatory, but one that is quite important here is remove_unused_columns=False. This one will drop any features not used by the model's call function. By default it's True because usually it's ideal to drop unused feature columns, making it easier to unpack inputs into the model's call function. However, in our case, we need the unused features ('***video***' in particular) in order to create pixel_values which is expected by our model in its inputs." + ], + "metadata": { + "id": "dvSo7BYy_ARJ" + } + }, + { + "cell_type": "code", + "source": [ + "from transformers import TrainingArguments, Trainer\n", + "\n", + "model_name = model_checkpt.split(\"/\")[-1]\n", + "new_model_name = f\"{model_name}-finetuned-ucf101-subset\"\n", + "num_epochs = 5\n", + "\n", + "args = TrainingArguments(\n", + " new_model_name,\n", + " auto_find_batch_size=True,\n", + " remove_unused_columns=False,\n", + " evaluation_strategy=\"epoch\",\n", + " save_strategy=\"epoch\",\n", + " learning_rate=5e-5,\n", + " per_device_train_batch_size=batch_size,\n", + " per_device_eval_batch_size=batch_size,\n", + " warmup_ratio=0.1,\n", + " logging_steps=10,\n", + " load_best_model_at_end=True,\n", + " metric_for_best_model=\"accuracy\",\n", + " push_to_hub=False,\n", + " max_steps=(train_dataset.num_videos // batch_size) * num_epochs,\n", + " num_train_epochs=num_epochs,\n", + ")" + ], + "metadata": { + "id": "tsiOWwikxtRN", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "4d1f0264-1539-4117-ea49-97ac3223c05f" + }, + "execution_count": 41, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1494: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", + " warnings.warn(\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Next we'll need a function for evaluating the accuracy of our model for training purpose." + ], + "metadata": { + "id": "PDYJvt-UCXUs" + } + }, + { + "cell_type": "code", + "source": [ + "import evaluate\n", + "\n", + "metric = evaluate.load(\"accuracy\")\n", + "\n", + "def compute_metrics(eval_pred):\n", + " \"\"\"Computes accuracy on a batch of predictions.\"\"\"\n", + " predictions = np.argmax(eval_pred.predictions, axis=1)\n", + " return metric.compute(predictions=predictions, references=eval_pred.label_ids)" + ], + "metadata": { + "id": "_XsjL0RSxwtE" + }, + "execution_count": 33, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "We'll also need to create a collate function for creating batches of data for training purpose. Each batch consists of 2 keys, pixel values and labels." + ], + "metadata": { + "id": "wIoE5kugCiUq" + } + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "\n", + "def collate_fn(examples):\n", + " \"\"\"The collation function to be used by `Trainer` to prepare data batches.\"\"\"\n", + " # permute to (num_frames, num_channels, height, width)\n", + " pixel_values = torch.stack(\n", + " [example[\"video\"].permute(1, 0, 2, 3) for example in examples]\n", + " )\n", + " labels = torch.tensor([example[\"label\"] for example in examples])\n", + " return {\"pixel_values\": pixel_values, \"labels\": labels}" + ], + "metadata": { + "id": "ieLEdVQQx3Tn" + }, + "execution_count": 30, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "trainer = Trainer(\n", + " model,\n", + " args,\n", + " train_dataset=train_dataset,\n", + " eval_dataset=val_dataset,\n", + " tokenizer=image_processor,\n", + " compute_metrics=compute_metrics,\n", + " data_collator=collate_fn,\n", + ")" + ], + "metadata": { + "id": "tjglLfCox5LK", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "ab5c11c4-1a9b-401f-fe77-da02ffb175db" + }, + "execution_count": 42, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "max_steps is given, it will override any value given in num_train_epochs\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "train_results = trainer.train()" + ], + "metadata": { + "id": "VEs2qvXFx69U", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 138 + }, + "outputId": "eb17a3ea-553b-4e67-c968-65b798a0df06" + }, + "execution_count": 43, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [375/375 11:10, Epoch 1/9223372036854775807]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation LossAccuracy
00.0065000.0055991.000000
10.0144000.0057131.000000

" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "trainer.save_model()\n", + "test_results = trainer.evaluate(test_dataset)\n", + "trainer.log_metrics(\"test\", test_results)\n", + "trainer.save_metrics(\"test\", test_results)\n", + "trainer.save_state()" + ], + "metadata": { + "id": "m4np55a3x-VT", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "04429e1e-073d-4ebd-abc5-836a20a42f02" + }, + "execution_count": 44, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "***** test metrics *****\n", + " epoch = 1.2\n", + " eval_accuracy = 1.0\n", + " eval_loss = 0.0122\n", + " eval_runtime = 0:01:00.68\n", + " eval_samples_per_second = 1.434\n", + " eval_steps_per_second = 0.363\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "We can now upload our training result to the hub." + ], + "metadata": { + "id": "vx5y4mKZDpWi" + } + }, + { + "cell_type": "code", + "source": [ + "trainer.push_to_hub()" + ], + "metadata": { + "id": "OaYtbggjyAx8", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 244, + "referenced_widgets": [ + "ba73a0b4b78342e195c8d56188870af0", + "c062c3b3f62f4ac8b2c50741ef14ccbe", + "d24fe51b6fc4405eb38d689f4547e62f", + "52cc999f539f43c8876b54c4644c1cec", + "e577cfe812e440a8a288f7b1a1c1520c", + "f39e1157966946608e08a799c8ba1776", + "e259a5c2421646a390baf8c5ea9a1b26", + "fe0d33c17e8b4016bd364c64d9e2255a", + "f1e8b3d5970241a58e6fb31f3268725a", + "f855f923f187460b84d512869a8683c7", + "92f7179d482b472cb1ab16ee83b0295a", + "c97dd9d0dcf44d68b7cc6def43b9516b", + "6e5e6fd19af34048a4ca80f4b6a2fe5b", + "8bb9c14a17044ffe87ce6b65a9295bc8", + "c39c477555be472d979ae246eedb9c5f", + "c6a45a8269c44af48f6ce851b5c5c9e0", + "1f1a524105664da3ac4d672dc81d0567", + "790beefea6a4491a9337b8295f8eb712", + "a1f91db399f147ffa151d894ef4d1000", + "aa1bedb37b5f4be7b41e16b389220a43", + "875b0b523f794c7f8f225fae23a21b6b", + "9df124317af3485181f1330e89ffbc31", + "9cd2ebbdd3274ed89fb438433c345f11", + "d244bc7e15914904ad7781c3eea0185e", + "4f61773e6d38431b8d1e74c36b885ac8", + "2d3dfcf4d2ac47ba875577ed03f2aee2", + "c964cf0d5fae4839957134ffb3d36946", + "144fcc757bfc463f860298bae09bc306", + "3799cbb9a1a94de59bec43c3a3a036de", + "5b99ce1a407b4e68b4af17172737db53", + "8f6bb4229fa7440c9c70bd5491d6a3bd", + "77ca9aac841d45bda3ac1f4ff3c0a48b", + "b306333e0e3c4b15b0ced069b0452605", + "6f72ea2f36374427b02af6bba1ae73e6", + "cb9e13d174624cfead5d52250300f27a", + "97e9468aeb514dfd907453f653ebfe05", + "07bc06213bfe4863bece098190dc9dbe", + "e4c3761e09a6480280f088b00a80cbd6", + "0e91b058199944c9a81fe86b79cbdd91", + "4d76a5e5cb684d56a112365539295f70", + "5c5d414f943a44ad82b0ef157d0053a1", + "3c8b442873ed4af1b4531cc80bfc37ab", + "6946e469524542c7ab6c86efcd31cbdb", + "faab4e2a2bb64a5cb868620e32b9f806", + "0bc2ee4841d845b28d18dbafadc99ca6", + "875c797ef0fa497192224eff4e0eb232", + "dc24ed8ff7b343adbd501e01ec2704bf", + "d94720c230a44b50b3fbcb2fe43edaac", + "6273631d95c64f92ab11233e58f29bf7", + "8ab7328f473b4c2ba5ebb19723c48aba", + "5149e59100dd4786b7d5c13d0c9ea664", + "63fac523b1e4447ebf2767269f280fc1", + "bc5b8c56b3ab4b8bb24def8c8168b6f4", + "c5b1a48f0fb44fa58f88dea4c4dbd5ac", + "512d64b1bf2d4751a60ed8e25cb84a1a", + "d23b159a719642f9b11d18fa0c576085", + "7874fc3181b349aaa7485d8ddf11f915", + "1ba39f95cd7443c5a25b54c3f587ec63", + "2ea426d50bd848f1808a954293f98537", + "78e5a033fbbf409486bac54250227b67", + "0be3f39168084bcb98d23716a0eb11ee", + "111fe69f57c546a39ef0e79e4c1a750c", + "8c032de4c9974dedab4f3ff49ede4757", + "60be9ae8b1b2442fb010577fdea0ac57", + "efecf6471ebb431c87687702cbc6e49b", + "37545942ed5546c59ad8d01cfa1ffb84" + ] + }, + "outputId": "5e9e3798-428e-4104-d512-25ded5f0692d" + }, + "execution_count": 45, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "events.out.tfevents.1723289519.c82016455c61.1590.3: 0%| | 0.00/24.9k [00:00" + ] + }, + "metadata": {}, + "execution_count": 50 + } + ] + }, + { + "cell_type": "code", + "source": [ + "predicted_class_idx = logits.argmax(-1).item()\n", + "print(\"Predicted class:\", model.config.id2label[predicted_class_idx])" + ], + "metadata": { + "id": "_5gBIfqtySkA", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "ab91b1d8-9132-47ab-ac98-cef2224507a9" + }, + "execution_count": 51, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Predicted class: BenchPress\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "vIop5V4GqZMQ" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file From 5160213709f20b6f9a6542ac68d32e4ea6b00735 Mon Sep 17 00:00:00 2001 From: DiwakarBasnet Date: Tue, 13 Aug 2024 06:27:27 +0000 Subject: [PATCH 2/4] Formatted code to pass quality check --- chapters/en/unit2/cnns/vgg.mdx | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/chapters/en/unit2/cnns/vgg.mdx b/chapters/en/unit2/cnns/vgg.mdx index 3d75129c0..8f2772b96 100644 --- a/chapters/en/unit2/cnns/vgg.mdx +++ b/chapters/en/unit2/cnns/vgg.mdx @@ -99,7 +99,7 @@ class VGG19(nn.Module): def forward(self, x): x = self.feature_extractor(x) # Pass input through the feature extractor layers - x = self.avgpool(x) # Pass Data through a pooling layer + x = self.avgpool(x) # Pass Data through a pooling layer x = x.view(x.size(0), -1) # Flatten the output for the fully connected layers x = self.classifier(x) # Pass flattened output through the classifier layers return x From 451bef404a626f6b0e51471465bdbe971174fcb6 Mon Sep 17 00:00:00 2001 From: DiwakarBasnet <61117698+DiwakarBasnet@users.noreply.github.com> Date: Thu, 22 Aug 2024 09:31:00 +0545 Subject: [PATCH 3/4] Fixed grammatical errors --- ...ivit_Fine_tuned_Video_Classification.ipynb | 158 ++++++------------ 1 file changed, 52 insertions(+), 106 deletions(-) diff --git a/notebooks/Unit 7 - Video and Video Processing/Vivit_Fine_tuned_Video_Classification.ipynb b/notebooks/Unit 7 - Video and Video Processing/Vivit_Fine_tuned_Video_Classification.ipynb index a5f586dd2..ee36aa336 100644 --- a/notebooks/Unit 7 - Video and Video Processing/Vivit_Fine_tuned_Video_Classification.ipynb +++ b/notebooks/Unit 7 - Video and Video Processing/Vivit_Fine_tuned_Video_Classification.ipynb @@ -4776,7 +4776,7 @@ "source": [ "Video classification is a task in machine learning where algorithms are trained to recognize and categorize the content of videos into predefined classes or categories by analyzing the spatial and temporal information present in the video frames. The field of video classification has been dominated by deep learning models that leverage convolutional neural networks (CNNs) for a long now. However, the emergence of transformer based models has sparked a revolution across various domains, including computer vision.\n", "\n", - "Video classification has various applications including action recognition, surveillance, content filtering, and recommendation systems. One of the transformers based algorithms developed for video classification is ViViT, which is also one of the initial successful pure transformer architecuter model for video processing and understanding.\n", + "Video classification has various applications including action recognition, surveillance, content filtering, and recommendation systems. One of the transformers based algorithms developed for video classification is ViViT, which is also one of the initial successful pure transformer architecture model for video processing and understanding.\n", "\n", "The Video Vision Transformer (ViViT) is like an upgraded version of Vision Transformer (ViT), but for videos instead of just images. The reason we need a separate algorithm for videos is because ViT, the one for images, only looks at each frame individually without considering how they relate to each other over time. But understanding how frames connect in a video is crucial for truly understanding its content, so we need a special algorithm, like ViViT, that can handle that temporal aspect. It has set new benchmarks for video classification accuracy. The model outperforms previous methodologies based on deep 3D convolutional networks across a variety of video classification benchmarks." ], @@ -4797,45 +4797,12 @@ "cell_type": "code", "execution_count": 1, "metadata": { - "id": "REjcTBIYrpOn", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "984213f6-49cd-4089-ab98-747622723bc5" + "id": "REjcTBIYrpOn" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/132.7 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m132.7/132.7 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.2/50.2 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.2/42.2 kB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.1/84.1 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m547.8/547.8 kB\u001b[0m \u001b[31m23.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m316.1/316.1 kB\u001b[0m \u001b[31m17.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m33.5/33.5 MB\u001b[0m \u001b[31m17.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m39.9/39.9 MB\u001b[0m \u001b[31m10.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h Building wheel for pytorchvideo (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - " Building wheel for fvcore (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - " Building wheel for iopath (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", - "cudf-cu12 24.4.1 requires pyarrow<15.0.0a0,>=14.0.1, but you have pyarrow 17.0.0 which is incompatible.\n", - "gcsfs 2024.6.1 requires fsspec==2024.6.1, but you have fsspec 2024.5.0 which is incompatible.\n", - "ibis-framework 8.0.0 requires pyarrow<16,>=2, but you have pyarrow 17.0.0 which is incompatible.\u001b[0m\u001b[31m\n", - "\u001b[0m" - ] - } - ], + "outputs": [], "source": [ "# Install required libraries\n", - "!pip install pytorchvideo evaluate accelerate transformers -q" + "!pip install pytorchvideo evaluate accelerate transformers > /dev/null 2>&1" ] }, { @@ -4850,35 +4817,14 @@ { "cell_type": "code", "source": [ - "!pip uninstall -y torchvision -q\n", - "!pip install torchvision==0.14.1 -q" + "!pip uninstall -y torchvision > /dev/null 2>&1\n", + "!pip install torchvision==0.14.1 > /dev/null 2>&1" ], "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "qjHUi8uLYkzM", - "outputId": "b2317e9a-ff24-471c-f625-07b9a68c6e9a" + "id": "qjHUi8uLYkzM" }, "execution_count": 2, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.2/24.2 MB\u001b[0m \u001b[31m49.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m887.5/887.5 MB\u001b[0m \u001b[31m2.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m317.1/317.1 MB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.0/21.0 MB\u001b[0m \u001b[31m84.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m849.3/849.3 kB\u001b[0m \u001b[31m43.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m557.1/557.1 MB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", - "torchaudio 2.3.1+cu121 requires torch==2.3.1, but you have torch 1.13.1 which is incompatible.\n", - "torchtext 0.18.0 requires torch>=2.3.0, but you have torch 1.13.1 which is incompatible.\u001b[0m\u001b[31m\n", - "\u001b[0m" - ] - } - ] + "outputs": [] }, { "cell_type": "markdown", @@ -4938,7 +4884,7 @@ "id": "TGi9tQbNvssf", "outputId": "1c100b33-3aab-40d6-e930-f41b18961fda" }, - "execution_count": 3, + "execution_count": null, "outputs": [ { "output_type": "display_data", @@ -4968,7 +4914,7 @@ { "cell_type": "markdown", "source": [ - "We are going to use [UCF101-subset](https://paperswithcode.com/dataset/ucf101) dataset for finetuning of our Vivit model. We are using just a subset of the original [UCF101-Action Recognition](https://www.crcv.ucf.edu/data/UCF101.php) data set, this is because transformers are GPU hungry and working with huge video data can easily use all our memory on colab. The original dataset coprises a diverse collection of 101 action categories, covering a wide range of human activities, from sports and dance to everyday actions. This particular subset contains train, test and validation dataset each with first 10 categories from the original dataset." + "We are going to use [UCF101-subset](https://paperswithcode.com/dataset/ucf101) dataset for fine tuning of our ViViT model. We are using just a subset of the original [UCF101-Action Recognition](https://www.crcv.ucf.edu/data/UCF101.php) data set, this is because transformers are GPU hungry and working with huge video data can easily use all our memory on Colab. The original dataset comprises a diverse collection of 101 action categories, covering a wide range of human activities, from sports and dance to everyday actions. This particular [subset](https://huggingface.co/datasets/sayakpaul/ucf101-subset) from [sayakpaul](https://huggingface.co/sayakpaul) contains train, test and validation dataset each with first 10 categories from the original dataset." ], "metadata": { "id": "SL6ND_UddajB" @@ -5006,7 +4952,7 @@ }, "outputId": "062099df-c317-4e83-95e0-bc305583e94d" }, - "execution_count": 4, + "execution_count": null, "outputs": [ { "output_type": "display_data", @@ -5041,7 +4987,7 @@ "metadata": { "id": "tpHRpgNvtF0_" }, - "execution_count": 5, + "execution_count": null, "outputs": [] }, { @@ -5067,7 +5013,7 @@ "id": "my_RjvHMtonC", "outputId": "0c257dc5-fdbb-4e15-800b-6b373ffe537b" }, - "execution_count": 6, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -5103,7 +5049,7 @@ "id": "-VojPl5Pt0Uc", "outputId": "fb7a30b6-6d3b-4fce-c85a-7aecada79f89" }, - "execution_count": 7, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -5147,7 +5093,7 @@ "id": "TWaLlmlNuTwg", "outputId": "f9e167e8-784b-463f-acf2-793d509178e7" }, - "execution_count": 8, + "execution_count": null, "outputs": [ { "output_type": "execute_result", @@ -5181,7 +5127,7 @@ "id": "BxfR-eZDuZbj", "outputId": "d147bdc1-308c-412b-b6ee-b9efe47eb537" }, - "execution_count": 9, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -5204,10 +5150,10 @@ { "cell_type": "markdown", "source": [ - "Before going any further into Video Vision Transformers (ViViT), let's have an overview of ViT over which ViViT are based on. ViT extracts N non-overlapping image patches, performs a linear projection and then raises them into 1D tokens. The sequence of tokens input to the transformer encoder is;\n", + "Before going any further into Video Vision Transformers (ViViT), let's have an overview of ViT over which ViViT are based on. ViT extracts N non-overlapping image patches, performs a linear projection and then raises them into 1D tokens. The sequence of tokens input to the transformer encoder is:\n", "* $Z = [Z_{cls}, Ex_1, Ex_2, ......., Ex_N] + P$\n", "\n", - "Where the projection by $E$ is equivalent to a 2D convolution. In addition, a learned positional embedding $P$ is added to the tokens to retain positional information, as the subsequent self-attention operations in the transformer are permutation invariant. The tokens are then passed through an encoder consisting of a sequence of $L$ transformer layers. Each $l$ th layer comprises of Multi-Headed Self-Attention (MSA), Layer Normalization (LN) and Multi-Layer Perceptron (MLP) blocks as follows;\n", + "Where the projection by $E$ is equivalent to a 2D convolution. In addition, a learned positional embedding $P$ is added to the tokens to retain positional information, as the subsequent self-attention operations in the transformer are permutation invariant. The tokens are then passed through an encoder consisting of a sequence of $L$ transformer layers. Each $l$ th layer comprises of Multi-Headed Self-Attention (MSA), Layer Normalization (LN) and Multi-Layer Perceptron (MLP) blocks as follows:\n", "* $y^l = MSA(LN(Z^l)) + Z^l$\n", "* $Z^{l+1} = MLP(LN(y^l)) + y^l$\n", "\n", @@ -5244,7 +5190,7 @@ "metadata": { "id": "v_UFlCGzr7GH" }, - "execution_count": 10, + "execution_count": null, "outputs": [] }, { @@ -5304,7 +5250,7 @@ }, "outputId": "6a4e09e6-e3d8-4b32-ab1f-3f024ccd0a2e" }, - "execution_count": 11, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -5366,19 +5312,19 @@ "source": [ "There are 4 variants of pure transformer based video classification models inspired by ViT.\n", "1. **Spatio-Temporal attention:**\n", - "* Tokenize video sample using tubelet embedding based approach.\n", - "* Pass each token through patch embedding layer and add a positional encoding and pass all tokens through standard transformer encoder.\n", + " * Tokenize video sample using tubelet embedding based approach.\n", + " * Pass each token through patch embedding layer and add a positional encoding and pass all tokens through standard transformer encoder.\n", "2. **Factorized Encoder:**\n", - "* Consists of 2 separate transformer encoders; spatial encoder and temporal encoder.\n", - "* First spatial encoder, only models interactions between tokens extracted from same temporal inderx. The frame level representations are concatenated and then forwarded through a temporal encoder.\n", - "* Second temporal encoder, models interaction between tokens from different temporal indices. Output token of this encoder is finally classified.\n", - "* For spatial transformer, each token is a tubelet extracted from one clip and all tokens are from same temporal but different spatial index.\n", - "* Although this model has more transformer layers than model 1, but requires fewer floating point operations (FLOPs).\n", + " * Consists of 2 separate transformer encoders; spatial encoder and temporal encoder.\n", + " * First spatial encoder, only models interactions between tokens extracted from same temporal index. The frame level representations are concatenated and then forwarded through a temporal encoder.\n", + " * Second temporal encoder, models interaction between tokens from different temporal indices. Output token of this encoder is finally classified.\n", + " * For spatial transformer, each token is a tubelet extracted from one clip and all tokens are from same temporal but different spatial index.\n", + " * Although this model has more transformer layers than model 1, but requires fewer floating point operations (FLOPs).\n", "3. **Factorized self-attention:**\n", - "* This model is slightly different than model 1, the MSA layers of the transformer block are broken into 2 parts. The first MSA layer computes self-attention spatially i.e. among all tokens extracted from same temporal index. ANd the second MSA layer computes self-attention temporally i.e among all tokens extracted from the same spatial index.\n", - "* The order of spatial-then-temporal self-attention or temporal-then-spatial self-attention does not make a difference.\n", + " * This model is slightly different than model 1, the MSA layers of the transformer block are broken into 2 parts. The first MSA layer computes self-attention spatially i.e. among all tokens extracted from same temporal index. And the second MSA layer computes self-attention temporally i.e among all tokens extracted from the same spatial index.\n", + " * The order of spatial-then-temporal self-attention or temporal-then-spatial self-attention does not make a difference.\n", "4. **Factorized dot-product attention:**\n", - "* This model is exactly similar to model 1 in terms of architecture, the only difference is the heads in MSA layer of transformer block is divided into 2 halves. Half of the heads compute dot product self attention between tokens extracted from same spatial index and the remaining heads compute dot-product self-attention between tokens extracted from temporal indexes.\n", + " * This model is exactly similar to model 1 in terms of architecture, the only difference is the heads in MSA layer of transformer block is divided into 2 halves. Half of the heads compute dot product self attention between tokens extracted from same spatial index and the remaining heads compute dot-product self-attention between tokens extracted from temporal indexes.\n", "\n", "Among all 4 models, model 2 was the best performing. All ViViT model variants were trying to combine the spatial and temporal tokens effectively to develop better semantic representation of the video. Model 2 first attends spatial aspect and later the temporal aspect of video sample. This approach is called divided space-time attention." ], @@ -5455,7 +5401,7 @@ "id": "VO_MhVaaujVu", "outputId": "6df6deae-3df0-41b7-c282-352996a35b91" }, - "execution_count": 12, + "execution_count": null, "outputs": [ { "output_type": "display_data", @@ -5540,7 +5486,7 @@ "metadata": { "id": "OAUhGCGsxRX3" }, - "execution_count": 13, + "execution_count": null, "outputs": [] }, { @@ -5576,7 +5522,7 @@ "metadata": { "id": "wOkQfRHwxRrH" }, - "execution_count": 14, + "execution_count": null, "outputs": [] }, { @@ -5653,7 +5599,7 @@ "metadata": { "id": "eLEBsx7CKKHH" }, - "execution_count": 15, + "execution_count": null, "outputs": [] }, { @@ -5677,7 +5623,7 @@ }, "outputId": "4be1101c-dd9a-464b-f68e-c679f7abfa94" }, - "execution_count": 16, + "execution_count": null, "outputs": [ { "output_type": "execute_result", @@ -5704,7 +5650,7 @@ }, "outputId": "f2b845d4-d0d2-4d5d-e73f-0fa2a3ab7cf9" }, - "execution_count": 17, + "execution_count": null, "outputs": [ { "output_type": "execute_result", @@ -5741,7 +5687,7 @@ }, "outputId": "90b269b9-9a80-4d65-94b1-9bcd76fc355f" }, - "execution_count": 18, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -5808,7 +5754,7 @@ "metadata": { "id": "r7WAriSkxgPj" }, - "execution_count": 19, + "execution_count": null, "outputs": [] }, { @@ -5825,7 +5771,7 @@ }, "outputId": "1d2c5db4-221b-4e26-a364-c297a6be1cc6" }, - "execution_count": 20, + "execution_count": null, "outputs": [ { "output_type": "execute_result", @@ -5894,7 +5840,7 @@ }, "outputId": "4d1f0264-1539-4117-ea49-97ac3223c05f" }, - "execution_count": 41, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -5930,7 +5876,7 @@ "metadata": { "id": "_XsjL0RSxwtE" }, - "execution_count": 33, + "execution_count": null, "outputs": [] }, { @@ -5959,7 +5905,7 @@ "metadata": { "id": "ieLEdVQQx3Tn" }, - "execution_count": 30, + "execution_count": null, "outputs": [] }, { @@ -5982,7 +5928,7 @@ }, "outputId": "ab5c11c4-1a9b-401f-fe77-da02ffb175db" }, - "execution_count": 42, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -6006,7 +5952,7 @@ }, "outputId": "eb17a3ea-553b-4e67-c968-65b798a0df06" }, - "execution_count": 43, + "execution_count": null, "outputs": [ { "output_type": "display_data", @@ -6067,7 +6013,7 @@ }, "outputId": "04429e1e-073d-4ebd-abc5-836a20a42f02" }, - "execution_count": 44, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -6174,7 +6120,7 @@ }, "outputId": "5e9e3798-428e-4104-d512-25ded5f0692d" }, - "execution_count": 45, + "execution_count": null, "outputs": [ { "output_type": "display_data", @@ -6301,7 +6247,7 @@ "metadata": { "id": "UfhYVMxHyGcS" }, - "execution_count": 46, + "execution_count": null, "outputs": [] }, { @@ -6317,7 +6263,7 @@ }, "outputId": "bcbe9895-cb7d-4092-842e-2c3cfd0c5a60" }, - "execution_count": 47, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -6365,7 +6311,7 @@ "metadata": { "id": "i1TKVW3kyLPA" }, - "execution_count": 48, + "execution_count": null, "outputs": [] }, { @@ -6376,7 +6322,7 @@ "metadata": { "id": "CaJ0YrQ7yPNc" }, - "execution_count": 49, + "execution_count": null, "outputs": [] }, { @@ -6392,7 +6338,7 @@ }, "outputId": "e2e02889-814c-40c6-989b-a5e9c998b385" }, - "execution_count": 50, + "execution_count": null, "outputs": [ { "output_type": "execute_result", @@ -6420,7 +6366,7 @@ }, "outputId": "ab91b1d8-9132-47ab-ac98-cef2224507a9" }, - "execution_count": 51, + "execution_count": null, "outputs": [ { "output_type": "stream", From c780b202f9e04de46344e8d826723c495b14fe49 Mon Sep 17 00:00:00 2001 From: DiwakarBasnet <61117698+DiwakarBasnet@users.noreply.github.com> Date: Sun, 27 Oct 2024 09:50:15 +0545 Subject: [PATCH 4/4] Update TableOfContents.mdx --- chapters/en/unit0/welcome/TableOfContents.mdx | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/chapters/en/unit0/welcome/TableOfContents.mdx b/chapters/en/unit0/welcome/TableOfContents.mdx index 111dedeee..6fb3ac593 100644 --- a/chapters/en/unit0/welcome/TableOfContents.mdx +++ b/chapters/en/unit0/welcome/TableOfContents.mdx @@ -26,7 +26,7 @@ Feel free to browse them at your own speed and interest. | | [Image Similarity](https://github.com/johko/computer-vision-course/blob/main/notebooks/Unit%204%20-%20Multimodal%20Models/CLIP%20and%20relatives/Image_similarity.ipynb) | [Image Similarity](https://colab.research.google.com/github/fariddinar/computer-vision-course/blob/main/notebooks/Unit%204%20-%20Multimodal%20Models/CLIP%20and%20relatives/Image_similarity.ipynb) | | Unit 5 - Generative Models | No Notebook | No Colab | | Unit 6 - Basic CV Tasks | [Fine-tune SAM on Custom Dataset]() | [Fine-tune SAM on Custom Dataset]() | -| Unit 7 - Video and Video Processing | No Notebook | No Colab | +| Unit 7 - Video and Video Processing | [Fine-tune ViViT for Video Classification](https://github.com/DiwakarBasnet/computer-vision-course/blob/unit-7_Video_and_VideoProcessing/notebooks/Unit%207%20-%20Video%20and%20Video%20Processing/Vivit_Fine_tuned_Video_Classification.ipynb) | [Fine-tune ViViT for Video Classification](https://github.com/DiwakarBasnet/computervisioncourse/blob/unit7_Video_and_VideoProcessing/notebooks/Unit%207%20%20Video%20and%20Video%20Processing/Vivit_Fine_tuned_Video_Classification.ipynb) | | Unit 8 - 3D Vision, Scene Rendering, and Reconstruction | No Notebook | No Colab | | Unit 9 - Model Optimization | [Edge TPU](https://github.com/johko/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/edge_tpu.ipynb) | [Edge TPU](https://colab.research.google.com/github/fariddinar/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/edge_tpu.ipynb) | | | [ONNX](https://github.com/johko/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/onnx.ipynb) | [ONNX](https://colab.research.google.com/github/fariddinar/computer-vision-course/blob/main/notebooks/Unit%209%20-%20Model%20Optimization/onnx.ipynb) |