-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_stage_1_referencenet.py
209 lines (175 loc) · 6.8 KB
/
train_stage_1_referencenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from diffusers import AutoencoderKL, UNet2DConditionModel, DDPMScheduler
import torchvision.transforms as transforms
from PIL import Image
from pathlib import Path
from typing import Dict, List, Tuple
from omegaconf import OmegaConf
class EMODatasetStage1(Dataset):
"""
Stage 1 dataset focused purely on frame encoding.
Only provides single frames for training the ReferenceNet and VAE.
"""
def __init__(
self,
data_dir: str,
video_dir: str,
json_file: str,
width: int = 512,
height: int = 512,
transform = None
):
self.data_dir = Path(data_dir)
self.video_dir = Path(video_dir)
self.width = width
self.height = height
# Default transform if none provided
self.transform = transform or transforms.Compose([
transforms.Resize((height, width)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# Load video metadata
import json
with open(json_file, 'r') as f:
self.data = json.load(f)
self.video_ids = list(self.data['clips'].keys())
def __len__(self) -> int:
return len(self.video_ids)
def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
"""
Returns a single frame for training.
For Stage 1, we only need individual frames.
"""
video_id = self.video_ids[idx]
video_path = self.video_dir / f"{video_id}.mp4"
# Read a random frame from the video
import cv2
cap = cv2.VideoCapture(str(video_path))
# Get random frame
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
target_frame = torch.randint(0, total_frames, (1,)).item()
cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame)
ret, frame = cap.read()
cap.release()
if not ret:
raise ValueError(f"Could not read frame from video: {video_path}")
# Convert BGR to RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
# Apply transforms
frame_tensor = self.transform(frame)
return {
'pixel_values': frame_tensor,
'video_id': video_id
}
class ReferenceNet(nn.Module):
"""
ReferenceNet: Extracts reference features from input frames.
Based on SD UNet architecture but modified for reference feature extraction.
"""
def __init__(self, unet: UNet2DConditionModel):
super().__init__()
self.unet = unet
# Freeze most UNet parameters except final blocks
for name, param in self.unet.named_parameters():
if 'up_blocks.3' not in name: # Only fine-tune the final up block
param.requires_grad = False
def forward(self, latents: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor:
"""Extract reference features through modified SD UNet."""
return self.unet(latents, timesteps, return_dict=False)[0]
def train_stage1(config: OmegaConf) -> None:
"""
Stage 1 training focusing on frame encoding with ReferenceNet and VAE.
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize dataset
dataset = EMODatasetStage1(
data_dir=config.data.data_dir,
video_dir=config.data.video_dir,
json_file=config.data.json_file,
width=config.data.train_width,
height=config.data.train_height
)
dataloader = DataLoader(
dataset,
batch_size=config.training.batch_size,
shuffle=True,
num_workers=config.training.num_workers
)
# Initialize models
# 1. VAE from Stable Diffusion
vae = AutoencoderKL.from_pretrained(
"stabilityai/sd-vae-ft-mse"
).to(device)
vae.eval() # Freeze VAE weights
# 2. UNet from Stable Diffusion for ReferenceNet
reference_unet = UNet2DConditionModel.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="unet"
).to(device)
# 3. Initialize ReferenceNet
reference_net = ReferenceNet(reference_unet).to(device)
# Initialize optimizer (only for ReferenceNet)
optimizer = torch.optim.AdamW(
filter(lambda p: p.requires_grad, reference_net.parameters()),
lr=config.training.learning_rate
)
# Initialize noise scheduler
noise_scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear"
)
# Training loop
for epoch in range(config.training.num_epochs):
total_loss = 0
reference_net.train()
for step, batch in enumerate(dataloader):
# Get input images
images = batch['pixel_values'].to(device)
# Encode images to latent space using frozen VAE
with torch.no_grad():
latents = vae.encode(images).latent_dist.sample()
latents = latents * 0.18215
# Add noise to latents
noise = torch.randn_like(latents)
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps,
(images.shape[0],), device=device
).long()
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get model prediction
noise_pred = reference_net(noisy_latents, timesteps)
# Calculate loss
loss = F.mse_loss(noise_pred, noise)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
# Log progress
if step % config.training.log_every == 0:
print(f"Epoch {epoch+1}/{config.training.num_epochs}, "
f"Step {step}/{len(dataloader)}, "
f"Loss: {loss.item():.4f}")
# Save checkpoint
if (epoch + 1) % config.training.save_every == 0:
checkpoint = {
'epoch': epoch,
'reference_net_state_dict': reference_net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': total_loss / len(dataloader),
}
torch.save(
checkpoint,
f"{config.training.checkpoint_dir}/stage1_epoch_{epoch+1}.pt"
)
if __name__ == "__main__":
# Load config
config = OmegaConf.load("configs/stage1.yaml")
train_stage1(config)