-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.yaml
executable file
·39 lines (39 loc) · 1.18 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
trainingInput:
pythonVersion: "3.5"
scaleTier: BASIC_GPU # BASIC | BASIC_GPU | STANDARD_1 | PREMIUM_1
######### example of custom scale tier config ##############
# scaleTier: CUSTOM
# masterType: complex_model_m
# workerType: complex_model_m
# parameterServerType: large_model
# workerCount: 9
# parameterServerCount: 3
######### example of hyper-parameter tuning config ##############
# hyperparameters:
# goal: MINIMIZE # Set to MINIMIZE or MAXIMIZE (e.g. rmse vs. accuracy)
# hyperparameterMetricTag: rmse # Set to the name of the metric you assigned to the estimator
# enableTrialEarlyStopping: True
# maxTrials: 30
# maxParallelTrials: 4
######### params to tune ##############
# params:
# - parameterName: num-layers
# type: DISCRETE
# discreteValues:
# - 2
# - 3
# - 4
# - 5
# scaleType: UNIT_LINEAR_SCALE
# - parameterName: layer-sizes-scale-factor
# type: DOUBLE
# minValue: 0.2
# maxValue: 0.8
# scaleType: UNIT_LINEAR_SCALE
# - parameterName: learning-rate
# type: DOUBLE
# minValue: 0.0001
# maxValue: 0.01
# scaleType: UNIT_LOG_SCALE
#
##### add more parameters that you want to tune...