You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
RuntimeError: CUDA error: no kernel image is available for execution on the device
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Voici mon bout de code
`import torch
import shutil
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
from huggingsound import TrainingArguments, ModelArguments, SpeechRecognitionModel, TokenSet
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-french", device=device)
output_dir = "/content/drive/MyDrive/wav-example/output2"
for filename in os.listdir(output_dir):
file_path = os.path.join(output_dir, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
first of all, you need to define your model's token set
however, the token set is only needed for non-finetuned models
if you pass a new token set for an already finetuned model, it'll be ignored during training
Notez que l'ajout de ces tokens est crucial, car leur absence pourrait affecter les performances du modèle ou même entraîner des erreurs lors de l'entraînement ou de l'inférence.
train_data = [
{"path": "/content/drive/MyDrive/wav-example/audio4.wav", "transcription": "bonjour je m'appelle Manuel je développe sous Androïd en Kotlin je fais des applications mobiles pour la société forestière je travaille dans la classification et reconnaissance vocale dans les essences et dans le domaine de la foresterie merci"},
]
eval_data = [
{"path": "/content/drive/MyDrive/wav-example/audio5.wav", "transcription": "je m'appelle Julien je développe sous Androïd fullstack pour la société forestière"},
]
the lines below will load the training and model arguments objects,
you can check the source code (huggingsound.trainer.TrainingArguments and huggingsound.trainer.ModelArguments) to see all the available arguments
Bonjour,
Lors de min finetuning j'ai une erreur:
RuntimeError: CUDA error: no kernel image is available for execution on the device
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Voici mon bout de code
`import torch
import shutil
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
from huggingsound import TrainingArguments, ModelArguments, SpeechRecognitionModel, TokenSet
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-french", device=device)
output_dir = "/content/drive/MyDrive/wav-example/output2"
for filename in os.listdir(output_dir):
file_path = os.path.join(output_dir, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
first of all, you need to define your model's token set
however, the token set is only needed for non-finetuned models
if you pass a new token set for an already finetuned model, it'll be ignored during training
Notez que l'ajout de ces tokens est crucial, car leur absence pourrait affecter les performances du modèle ou même entraîner des erreurs lors de l'entraînement ou de l'inférence.
tokens = [
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m",
"n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z",
"'", "", "|", "", "
", ""]
token_set = TokenSet(tokens)
define your train/eval data
train_data = [
{"path": "/content/drive/MyDrive/wav-example/audio4.wav", "transcription": "bonjour je m'appelle Manuel je développe sous Androïd en Kotlin je fais des applications mobiles pour la société forestière je travaille dans la classification et reconnaissance vocale dans les essences et dans le domaine de la foresterie merci"},
]
eval_data = [
{"path": "/content/drive/MyDrive/wav-example/audio5.wav", "transcription": "je m'appelle Julien je développe sous Androïd fullstack pour la société forestière"},
]
the lines below will load the training and model arguments objects,
you can check the source code (huggingsound.trainer.TrainingArguments and huggingsound.trainer.ModelArguments) to see all the available arguments
training_args = TrainingArguments(
learning_rate=3e-4,
max_steps=1000,
eval_steps=200,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
)
model_args = ModelArguments(
activation_dropout=0.1,
hidden_dropout=0.1,
)
evaluation = model.evaluate(eval_data)
print(evaluation)
and finally, fine-tune your model
model.finetune(
output_dir,
train_data=train_data,
eval_data=eval_data, # the eval_data is optional
token_set=token_set,
training_args=training_args,
model_args=model_args,
)`
Sous Google Collab Pro + sous une carte GPU avec Cuda NVidia A100
The text was updated successfully, but these errors were encountered: