-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLTree.hs
174 lines (109 loc) · 4.57 KB
/
LTree.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
-- (c) MP-I (1998/9-2006/7) and CP (2005/6-2014/5)
module LTree where
import Cp
import Data.Monoid
-- (1) Datatype definition -----------------------------------------------------
data LTree a = Leaf a | Fork (LTree a, LTree a) deriving (Show, Eq)
inLTree = either Leaf Fork
outLTree :: LTree a -> Either a (LTree a,LTree a)
outLTree (Leaf a) = i1 a
outLTree (Fork (t1,t2)) = i2 (t1,t2)
-- (2) Ana + cata + hylo -------------------------------------------------------
recLTree f = id -|- (f >< f)
cataLTree a = a . (recLTree (cataLTree a)) . outLTree
anaLTree f = inLTree . (recLTree (anaLTree f) ) . f
hyloLTree a c = cataLTree a . anaLTree c
baseLTree g f = g -|- (f >< f)
-- recLTree f = baseLTree id f
-- (3) Map ---------------------------------------------------------------------
instance Functor LTree
where fmap f = cataLTree ( inLTree . baseLTree f id )
-- (4) Examples ----------------------------------------------------------------
-- (4.0) Inversion (mirror) ----------------------------------------------------
invLTree = cataLTree (inLTree . (id -|- swap))
{-- Recall the pointwise version:
invLTree (Leaf a) = Leaf a
invLTree (Fork (a,b)) = Fork (invLTree b,invLTree a)
--}
-- (4.1) Counting --------------------------------------------------------------
countLTree = cataLTree (either one add)
-- (4.2) Serialization ---------------------------------------------------------
tips = cataLTree (either singl conc)
where conc(l,r)= l ++ r
-- (4.3) Double factorial ------------------------------------------------------
dfac 0 = 1
dfac n = hyloLTree (either id mul) dfacd (1,n) where mul(x,y)=x*y
dfacd(n,m) | n==m = i1 n
| otherwise = i2 ((n,k),(k+1,m))
where k = div (n+m) 2
-- (4.4) Double square function ------------------------------------------------
-- recall sq' in RList.hs in...
dsq' 0 = 0
dsq' n = (cataLTree (either id add) . fmap (\n->2*n-1) . (anaLTree dfacd)) (1,n)
-- where add(x,y)=x+y
-- that is
dsq 0 = 0
dsq n = (hyloLTree (either id add) (fdfacd nthodd)) (1,n)
where nthodd n = 2*n - 1
fdfacd f (n,m) | n==m = i1 (f n)
| otherwise = i2 ((n,k),(k+1,m))
where k = div (n+m) 2
-- (4.5) Fibonacci -------------------------------------------------------------
fib = hyloLTree (either one add) fibd
-- where
fibd n | n < 2 = i1 ()
| otherwise = i2 (n-1,n-2)
-- (4.6) Merge sort ------------------------------------------------------------
mSort :: Ord a => [a] -> [a]
mSort [] = []
mSort l = hyloLTree (either singl merge) lsplit l
--where
-- singl x = [x]
merge (l,[]) = l
merge ([],r) = r
merge (x:xs,y:ys) | x < y = x : merge(xs,y:ys)
| otherwise = y : merge(x:xs,ys)
lsplit [x] = i1 x
lsplit l = i2 (sep l)
sep [] = ([],[])
sep (h:t) = let (l,r) = sep t in (h:r,l) -- a List cata
{-- pointwise version:
mSort :: Ord a => [a] -> [a]
mSort [] = []
mSort [x] = [x]
mSort l = let (l1,l2) = sep l
in merge(mSort l1, mSort l2)
--}
-- (4.7) Double map (unordered lists) ------------------------------------------
dmap :: (b -> a) -> [b] -> [a]
dmap f [] = []
dmap f x = (hyloLTree (either (singl.f) conc) lsplit) x
-- (4.8) Double map (keeps the order) ------------------------------------------
dmap1 :: (b -> a) -> [b] -> [a]
dmap1 f [] = []
dmap1 f x = (hyloLTree (either (singl.f) conc) divide) x
where divide [x] = i1 x
divide l = i2 (split (take m) (drop m) l) where m = div (length l) 2
-- (5) Monad -------------------------------------------------------------------
-- instance Monad LTree where
-- return = Leaf
-- t >>= g = (mu . fmap g) t
mu :: LTree (LTree a) -> LTree a
mu = cataLTree (either id Fork)
{-- fmap :: (Monad m) => (t -> a) -> m t -> m a
fmap f t = do { a <- t ; return (f a) }
--}
-- (6) Going polytipic -------------------------------------------------------
-- natural transformation from base functor to monoid
tnat :: Monoid c => (a -> c) -> Either a (c, c) -> c
tnat f = either f (uncurry mappend)
-- monoid reduction
monLTree f = cataLTree (tnat f)
-- alternative to (4.2) serialization ----------------------------------------
tips' = monLTree singl
-- alternative to (4.1) counting ---------------------------------------------
countLTree' = monLTree (const (Sum 1))
-- distributive law ----------------------------------------------------------
dlLTree :: Strong f => LTree (f a) -> f (LTree a)
dlLTree = cataLTree (either (fmap Leaf) (fmap Fork .dstr))
---------------------------- end of library ----------------------------------