-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluation.py
600 lines (509 loc) · 23.2 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
from utils.profile import profile
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
import json
from tqdm import tqdm
from decimal import Decimal
import numpy as np
from sklearn.utils.multiclass import unique_labels
from sklearn.metrics import fbeta_score, confusion_matrix, precision_score, recall_score, multilabel_confusion_matrix
from utils.utilitary_mtl import fmeasure
from utils.f_scores import F2Score
from utils.opportunity import opportunity_select_channels_tf
from dataio.opportunity.opportunity_adapter import opportunity_reader
import tensorflow as tf
import os
import sys
import math
import argparse
def construct_parser():
def int_list(s): return [int(item) for item in s.strip().split(',')]
parser = argparse.ArgumentParser()
parser.add_argument(
'labels', help='the labels to evaluate against', type=int_list)
subparsers = parser.add_subparsers(title="Operation", dest="op")
subparsers.required = True
modelparser = subparsers.add_parser(
'model', help='Evaluate a tf.keras model')
modelparser.add_argument('hdf5', help='input model file', type=str)
modelparser.add_argument(
'--from-config', help='If passed, load config and weights seperately. Must pass the name of the hdf5 file with extensions .hdf5 or .h5, and json file must have same name with extension .json if passed.', action='store_true')
modelparser.add_argument('--data', help='input dataset dir', type=str,
default='/data/opportunity/window_labels-mtl-tf/all_sensors/64')
modelparser.add_argument('--out', help='output directory', type=str,
default='/models/OPPORTUNITY/MTL-HPS/evaluation')
modelparser.add_argument('--batch-size', type=int, default=500)
evalparser = subparsers.add_parser(
'eval', help='Plot from a given evaluation file generated by this utility or the included callback')
evalparser.add_argument('evaljson', help='Path to the evaluation file')
evalparser.add_argument('tag', help='A tag to prefix to the output files')
evalparser.add_argument('outdir', help='where to save the output files')
masterevalparser = subparsers.add_parser(
'mastereval', help='Compare multiple models with each other, by generating a CSV file with comparisons that will be plotted to a facetted lmplot')
masterevalparser.add_argument(
'masterevalfile', type=str, help='the filename and path of the master evaluation csv and png file')
masterevalparser.add_argument(
'evaljson', type=str, help='evaluation json to read into the master evaluation csv')
masterevalparser.add_argument(
'modelname', type=str, help='the model name to be used in graphs')
masterevalparser.add_argument('--plotonly', action='store_true')
masterevalparser.add_argument('--dpi', default=180, type=int)
return parser
if __name__ == "__main__":
parser = construct_parser()
args = parser.parse_args()
print("Command line arguments:")
for arg in vars(args):
print(f' {arg} : {getattr(args, arg)}')
print("\n")
class EvaluationCallback(tf.keras.callbacks.Callback):
def __init__(self, dataset, label_names, num_classes, base_out_dir):
self.evaluator = Evaluator(label_names, num_classes)
self.dataset = dataset
self.label_names = label_names
self.num_classes = num_classes
self.base_out_dir = base_out_dir
@profile
def do_eval(self, epoch):
outdir = os.path.join(self.base_out_dir)
if not os.path.isdir(outdir):
os.makedirs(outdir)
prefix = f"ep{epoch + 1}"
print()
print('Commencing evaluation')
self.evaluator.evaluate_model(
self.model, self.dataset,
self.label_names, self.num_classes,
outdir,
prefix=prefix
)
tf.keras.backend.clear_session()
print("tf.keras session cleared")
self.evaluator.save_evaluation(outdir, prefix=prefix)
def on_epoch_end(self, epoch, logs=None):
self.do_eval(epoch)
class Evaluator:
def __init__(self, label_names=None, num_classes=None):
self.modes = ['micro', 'macro', 'weighted', None]
self.betas = [1]
if label_names is not None and num_classes is not None:
self.initialize(label_names, num_classes)
def initialize(self, label_names, num_classes):
self.label_names = label_names
self.num_classes = num_classes
self.evaluation = []
def load_evaluation(self, args):
with open(args.evaljson, "r") as jf:
self.evaluation = json.load(jf)
def master_evaluate(self, args):
if not os.path.isfile(args.masterevalfile) and args.plotonly:
raise FileNotFoundError(
f"The file {args.masteronly} could not be found, so plotting is not possible")
if args.plotonly:
self.mastereval = pd.read_csv(
filepath_or_buffer=args.masterevalfile)
print(f"Read {args.masterevalfile}")
evaldf = self.make_evaluation_dataframe(args.modelname)
if os.path.isfile(args.masterevalfile) and not args.plotonly:
self.mastereval = pd.read_csv(
filepath_or_buffer=args.masterevalfile)
print(f"Read {args.masterevalfile}")
self.mastereval = self.mastereval.append(evaldf)
self.mastereval.to_csv(path_or_buf=args.masterevalfile,
index=False)
print(f"Appended {args.masterevalfile}")
if not os.path.isfile(args.masterevalfile) and not args.plotonly:
self.mastereval = evaldf
self.mastereval.to_csv(
path_or_buf=args.masterevalfile,
index=False)
print(f'Wrote {args.masterevalfile}')
#p = self.plot_metrics_plot_mastereval(args)
#pname = os.path.join(os.path.dirname(
# args.masterevalfile), f"{os.path.basename(args.masterevalfile)}.png")
#p.savefig(pname, dpi=args.dpi)
#print(f"Wrote to {pname}")
def plot_metrics_plot_mastereval(self, args):
p = sns.lmplot(data=self.mastereval,
x="Epoch",
y="Metric value",
col="Label channel",
hue="Model name",
col_wrap=3,
truncate=True,
lowess=True,
markers='.',
sharex=False,
sharey=False,
#line_kws={"lw": 1.25},
#scatter_kws={"s" : 4}
)
p.set(ylim=(0.7, 0.93))
return p
def save_evaluation(self, outdir, prefix=None):
def _convert(o):
if isinstance(o, np.int64):
return int(o)
if isinstance(o, np.ndarray):
if o.dtype == np.dtype('float64'):
return o.astype('float32').tolist()
return o.tolist()
raise TypeError
if prefix is None:
dest_name = os.path.join(outdir, 'eval.json')
else:
dest_name = os.path.join(outdir, f"{prefix}_eval.json")
with open(dest_name, 'w') as f:
json.dump(self.evaluation, f, indent=2, default=_convert)
print(f'Wrote evaluation data to {dest_name}')
def make_evaluation_dataframe(self, modelname=None):
metric_name = "fbeta"
average_names = ["micro", "macro", "weighted"]
fbeta_names = [
f"f{int(beta)}-{av}" for beta in self.betas for av in average_names]
allowed_metric_names = fbeta_names
data = {
"Label channel": [],
"Epoch": [],
"Metric": [],
"Metric value": []
}
if modelname is not None:
data["Model name"] = []
for eval_epoch, eval_data in enumerate(self.evaluation):
met_data = eval_data[metric_name]
for ln in self.label_names:
met_data_label = met_data[ln]
for av in met_data_label.keys():
if av in allowed_metric_names:
data["Metric value"].append(met_data_label[av])
data["Metric"].append(av)
data["Label channel"].append(ln)
data["Epoch"].append(eval_epoch + 1)
if modelname is not None:
data["Model name"].append(modelname)
data = pd.DataFrame(data)
print(data)
return data
def plot_metrics_plot_single_eval(self):
# fig = plt.figure(figsize=(10 * len(self.label_names), 10))
data = self.make_evaluation_dataframe()
# plot = sns.relplot(data=data, x='Epoch', y='Metric value',
# col='Label Channel', hue='Metric', style='Metric',
# kind='line', col_wrap=2, markers=True,
# height=10, aspect=1.5)
plot = sns.lmplot(x="Epoch", y="Metric value", data=data,
hue="Label Channel", order=4,
height=10, aspect=1.5,
truncate=True,
ci=95, scatter=True)
x = data["Epoch"]
xint = range(min(x), math.ceil(max(x))+1)
plt.xticks(xint) # , rotation=30)
return plot, data
def save_metrics_plot(self, outdir, prefix=None):
if prefix is None:
dest_name = os.path.join(outdir, 'metrics.png')
csvname = os.path.join(outdir, 'metrics-sklearn.csv')
else:
dest_name = os.path.join(outdir, f"{prefix}_metrics.png")
csvname = os.path.join(outdir, f'{prefix}_metrics-sklearn.csv')
fig, dataframe = self.plot_metrics_plot_single_eval()
fig.savefig(dest_name, dpi=320)
dataframe.to_csv(path_or_buf=csvname, index=False)
print(f'Wrote metrics plot to {dest_name}')
def load_test_data(self, args):
label_names, num_classes = opportunity_select_channels_tf(args.labels)
all_label_names, _ = opportunity_select_channels_tf(list(range(7)))
print(f"Loading dataset from {args.data}")
test_file_criteria = ["ADL4", "ADL5"]
test_files = []
filelist = os.listdir(args.data)
for fn in filelist:
if not fn.find(".tfrecords"):
continue
is_test = any([fn.find(c) > 0 for c in test_file_criteria])
if is_test:
test_files.append(os.path.join(args.data, fn))
test_dataset = opportunity_reader(
test_files[0:1],
all_label_names=all_label_names,
selected_label_names=label_names,
number_classes=num_classes,
validation=True)
test_dataset = test_dataset.batch(args.batch_size, drop_remainder=True)
self.initialize(label_names, num_classes)
return test_dataset, label_names, num_classes
def load_model(self, args):
if args.from_config:
if (args.hdf5.find('hdf5') > -1) or (args.hdf5.find('h5') > -1):
jsonname = args.hdf5.replace('_weights.h5', '.json').replace(
'.hdf5', '.json').replace('.h5', '.json')
hdf5name = args.hdf5
print(f"Loading model config from {jsonname}")
with open(jsonname, 'r') as jf:
config = jf.read()
model = tf.keras.models.model_from_json(config)
print(f'Loading model weights from {hdf5name}')
model.load_weights(hdf5name)
else:
raise AttributeError(
"Please pass the name of the HDF5 file with extension '.hdf5' or '.h5', not the '.json' file, when loading from config")
else:
print(f'Loading model weights and config from {args.hdf5}')
model = tf.keras.models.load_model(args.hdf5)
print()
model.summary()
return model
def save_confusion_matrix(self, y_true, y_pred, num_classes, label_name, outdir, prefix=None):
cm = confusion_matrix(y_true, y_pred)
ax = self.plot_confusion_matrix(
cm,
np.array(list(range(num_classes))),
normalize=True, title=label_name)
if prefix is not None:
dest_path = os.path.join(
outdir, f'{prefix}_confusion_{label_name}.png')
else:
dest_path = os.path.join(outdir, f'confusion_{label_name}.png')
plt.savefig(dest_path)
print(f'Wrote confusion matrix {dest_path}')
def plot_confusion_matrix(self,
cm,
classes,
normalize=False,
title=None,
verbose=False,
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
# Compute confusion matrix
# cm = confusion_matrix(y_true, y_pred)
# Only use the labels that appear in the data
# classes = classes[unique_labels(y_true, y_pred)]
if normalize:
s = cm.sum(axis=1)[:, np.newaxis]
cm = np.divide(cm.astype('float'), s, where=s != 0)
if verbose and normalize:
print("Normalized confusion matrix")
elif verbose and not normalize:
print('Confusion matrix, without normalization')
if verbose:
print(cm)
fig = plt.figure(figsize=(10, 10), dpi=160)
ax = plt.gca()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
return ax
def evaluate_model(self, model, dataset, label_names, num_classes, outdir, prefix=None, beta=1.0, write_confusion=False):
confusion_matrices = {label_names[i]: np.zeros(
(nc, nc), dtype=int) for i, nc in enumerate(num_classes)}
for x, y_true_all in tqdm(iter(dataset), file=sys.stdout):
y_pred_all = model.predict(x)
for li, ln in enumerate(label_names):
if not type(y_pred_all) is list:
y_pred = y_pred_all
else:
y_pred = y_pred_all[li]
y_true = y_true_all[li]
y_true_a = tf.math.argmax(y_true, axis=1)
y_pred_a = np.argmax(y_pred, axis=1)
confusion_matrices[ln] += confusion_matrix(
y_true_a, y_pred_a, labels=list(range(self.num_classes[li])))
# for i in range(len(y_pred_a)):
# y_t = int(y_true_a[i])
# y_p = int(y_pred_a[i])
# confusion_matrices[ln][y_t, y_p] += 1
multilabel_confision_matrices = {ln: self.cmat_to_mlcmat(
confusion_matrices[ln]) for ln in self.label_names}
precisions = {ln: {} for ln in self.label_names}
recalls = {ln: {} for ln in self.label_names}
fmeasure = {ln: {} for ln in self.label_names}
for li, ln in enumerate(self.label_names):
labels = list(range(self.num_classes[li]))
for mode in self.modes:
prec, rec, _, _ = self.precision_recall_fscore_support(
multilabel_confision_matrices[ln], labels=labels,
average=mode)
mode_text = "none" if mode is None else mode
precisions[ln][mode_text] = prec
recalls[ln][mode_text] = rec
for beta in self.betas:
_, _, fb, _ = self.precision_recall_fscore_support(
multilabel_confision_matrices[ln], labels=labels,
beta=beta,
average=mode
)
fb_mode_text = f"f{int(beta)}-{mode_text}"
fmeasure[ln][fb_mode_text] = fb
eval = {
# 'confusion': {ln: cm.tolist() for ln, cm in confusion_matrices.items()},
# 'confusion-ml': multilabel_confision_matrices,
'precision': precisions,
'recall': recalls,
'fbeta': fmeasure
}
if prefix is not None:
eval['prefix'] = prefix
if write_confusion:
eval['confusion'] = confusion_matrices
eval['confusion-ml'] = multilabel_confision_matrices
self.evaluation.append(eval)
return eval
def cmat_to_mlcmat(self, cmat):
# layout is:
# tn fn
# fp tp
num_classes = cmat.shape[1]
mlc = np.zeros((num_classes, 2, 2), dtype=int)
for label in range(num_classes):
tp = cmat[label, label]
a = set(range(num_classes))
a.remove(label)
a = [(x, y) for x in a for y in a]
tn = np.sum([cmat[y] for y in a])
fp = np.sum(cmat[label, :]) - tp
fn = np.sum(cmat[:, label]) - tp
mlc[label, 1, 1] = tp
mlc[label, 0, 0] = tn
mlc[label, 0, 1] = fn
mlc[label, 1, 0] = fp
return mlc
def precision_recall_fscore_support(self,
MCM, beta=1.0, labels=None,
pos_label=1, average=None,
warn_for=('precision', 'recall',
'f-score'),
sample_weight=None):
"""Adapted from SciKit Learn, Source: https://github.com/scikit-learn/scikit-learn/blob/1495f6924/sklearn/metrics/classification.py#L1263
This variant allows for passing in multi-label confusion matrices that have been pre-calculated, as opposed to arrays of predictions and ground truths"""
tp_sum = MCM[:, 1, 1]
pred_sum = tp_sum + MCM[:, 0, 1]
true_sum = tp_sum + MCM[:, 1, 0]
if average == 'micro':
tp_sum = np.array([tp_sum.sum()])
pred_sum = np.array([pred_sum.sum()])
true_sum = np.array([true_sum.sum()])
# Finally, we have all our sufficient statistics. Divide! #
beta2 = beta ** 2
# Divide, and on zero-division, set scores to 0 and warn:
precision = self._prf_divide(tp_sum, pred_sum,
'precision', 'predicted', average, warn_for)
recall = self._prf_divide(tp_sum, true_sum,
'recall', 'true', average, warn_for)
# Don't need to warn for F: either P or R warned, or tp == 0 where pos
# and true are nonzero, in which case, F is well-defined and zero
denom = beta2 * precision + recall
denom[denom == 0.] = 1 # avoid division by 0
f_score = (1 + beta2) * precision * recall / denom
# Average the results
if average == 'weighted':
weights = true_sum
if weights.sum() == 0:
return 0, 0, 0, None
elif average == 'samples':
weights = sample_weight
else:
weights = None
if average is not None:
# assert average != 'binary' or len(precision) == 1
precision = np.average(precision, weights=weights)
recall = np.average(recall, weights=weights)
f_score = np.average(f_score, weights=weights)
true_sum = None # return no support
return precision, recall, f_score, true_sum
def _prf_divide(self, numerator, denominator, metric, modifier, average, warn_for):
"""Performs division and handles divide-by-zero.
On zero-division, sets the corresponding result elements to zero
and raises a warning.
The metric, modifier and average arguments are used only for determining
an appropriate warning.
"""
mask = denominator == 0.0
denominator = denominator.copy()
denominator[mask] = 1 # avoid infs/nans
result = numerator / denominator
if not np.any(mask):
return result
# build appropriate warning
# E.g. "Precision and F-score are ill-defined and being set to 0.0 in
# labels with no predicted samples"
axis0 = 'sample'
axis1 = 'label'
if average == 'samples':
axis0, axis1 = axis1, axis0
if metric in warn_for and 'f-score' in warn_for:
msg_start = '{0} and F-score are'.format(metric.title())
elif metric in warn_for:
msg_start = '{0} is'.format(metric.title())
elif 'f-score' in warn_for:
msg_start = 'F-score is'
else:
return result
msg = ('{0} ill-defined and being set to 0.0 {{0}} '
'no {1} {2}s.'.format(msg_start, modifier, axis0))
if len(mask) == 1:
msg = msg.format('due to')
else:
msg = msg.format('in {0}s with'.format(axis1))
return result
if __name__ == "__main__":
sns.set()
sns.set_style("whitegrid")
sns.set_context("paper")
evaluator = Evaluator()
if args.op == 'model':
dataset, label_names, num_classes = evaluator.load_test_data(args)
model = evaluator.load_model(args)
if args.out is not None:
outdir = os.path.dirname(args.hdf5)
else:
outdir = args.out
evaluator.evaluate_model(
model, dataset, label_names, num_classes, outdir)
evaluator.save_evaluation(outdir, "model_evaluation")
eval_name = 'model_evaluation'
elif args.op == 'eval':
label_names, num_classes = opportunity_select_channels_tf(args.labels)
evaluator.initialize(label_names, num_classes)
evaluator.load_evaluation(args)
outdir = args.outdir
if not os.path.isdir(outdir):
os.makedirs(outdir)
print(f"Created directory {outdir}")
eval_name = args.tag
elif args.op == 'mastereval':
label_names, num_classes = opportunity_select_channels_tf(args.labels)
evaluator.initialize(label_names, num_classes)
evaluator.load_evaluation(args)
evaluator.master_evaluate(args)
if not args.op == 'mastereval':
evaluator.save_metrics_plot(outdir, eval_name)