-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhps.py
397 lines (337 loc) · 14.2 KB
/
hps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import os
import argparse
import tensorflow as tf
import numpy as numpy
import sys
import time
from os import path
import shutil
from models import base_models_mtl
from utils.utilitary_mtl import fmeasure
from models.generate_mtl_head import generate_mtl_head, generate_sparse_mtl_head
from dataio.opportunity.opportunity_adapter import opportunity_reader
from utils.opportunity import opportunity_select_channels_tf, opportunity_num_classes_for_label_channel
from shared import load_opportunity_data_mtl_tf
from dataio.deap.deap_reader import deap_reader
from utils.deap import select_channels_deap, load_deap_data
from utils.f_scores import F2Score
from evaluation import Evaluator, EvaluationCallback
from utils.app_hps import parse_args
from utils.misc import Unbuffered, print_arguments
import shared
import jsons
model_choices = [
"cnn2",
"cnnDeapFFT",
"cnn-sparse",
"tripathi",
"cnn2-sparseish",
"mlp",
"normConv3"
]
def generate_loss_dict(label_names, args):
if args.dataset == 'deap' and not args.deap_one_hot:
fun = tf.keras.losses.SparseCategoricalCrossentropy()
else:
fun = tf.keras.losses.CategoricalCrossentropy()
if len(label_names) == 1:
return [fun]
return {f"{ln}_out": fun for ln in label_names}
def generate_class_weights(label_names, num_classes, null_weight=1.0, non_null_weight=1.0):
if null_weight == 1.0 and non_null_weight == 1.0:
return None
cw = {f"{ln}_out": {} for ln in label_names}
for li, ln in enumerate(label_names):
lna = f"{ln}_out"
nc = num_classes[li]
for c in range(nc):
if c == 0:
cw[lna][c] = null_weight
else:
cw[lna][c] = non_null_weight
return cw
def build_mtl_model(args, input_shape, label_names, nb_classes):
print(f"Building model of type {args.model} for {len(label_names)} tasks")
axes_order = "time-first" if args.dataset == 'opportunity' else "sensors-first"
print("axes order", axes_order)
if args.head_layout == 'none' and len(args.labels) == 1:
if args.model == 'cnnDeapFFT':
base_model = base_models_mtl.convNetDeapFFT(
inputShape=input_shape,
withHead=True,
nbClasses=nb_classes)
elif args.model == 'normConv3':
base_model = base_models_mtl.normConv3(
input_shape=input_shape,
with_head=True,
nb_classes=nb_classes,
label_names=label_names
)
elif args.model == 'cnn2':
base_model = base_models_mtl.convNet2(inputShape=input_shape,
withHead=True, nbClasses=nb_classes,
input_axes_order=axes_order)
elif args.model == 'cnn2-sparseish':
base_model = base_models_mtl.convNet2Sparseish(
input_shape, withHead=True, nbClasses=nb_classes)
elif args.model == 'cnn-sparse':
base_model = base_models_mtl.cnnSparse(
inputShape=input_shape, withHead=True, nbClasses=nb_classes)
elif args.model == 'tripathi':
# base_model = convNetDEAPTripathi(
base_model = base_models_mtl.convNetDEAPTripathiReluSingleChannel(
input_shape=input_shape,
num_classes=num_classes,
label_names=label_names,
generate_head=True
)
elif args.model == 'mlp':
base_model = base_models_mtl.mlp(
input_shape=input_shape,
num_classes=num_classes,
label_names=label_names,
generate_head=True
)
else:
raise ValueError("Unsupported base model!")
return base_model
if args.model == 'cnn2':
if not args.cnn2dense:
base_model = base_models_mtl.convNet2(
inputShape=input_shape,
axes_order=axes_order,
neuronsMLP=[])
else:
base_model = base_models_mtl.convNet2(
inputShape=input_shape, axes_order=axes_order)
elif args.model == 'cnn-sparse':
base_model = base_models_mtl.cnnSparse(inputShape=input_shape)
elif args.model == 'cnn2-sparseish':
base_model = base_models_mtl.convNet2Sparseish(input_shape)
elif args.model == 'normConv3':
base_model = base_models_mtl.normConv3(
input_shape=input_shape,
units_mlp=[])
else:
raise ValueError("Unsupported base model!")
if args.head_layout == 'dense':
heads = generate_mtl_head(task_labels=label_names,
neurons_per_head=args.neurons_per_head,
layers_per_head=args.layers_per_head,
number_classes=nb_classes,
dense_dropout=args.head_dropout,
input_model=base_model)
elif args.head_layout == 'sparse':
heads = generate_sparse_mtl_head(task_labels=label_names,
number_classes=nb_classes,
layers_per_head=args.layers_per_head,
sizes_per_head=args.sizes_per_head,
filters_per_head=args.filters_per_head,
input_model=base_model)
else:
raise ValueError("Unsupported head layout!")
mtl_model = tf.keras.Model(inputs=base_model.input, outputs=heads)
return mtl_model
def train_mtl_model(model,
label_names,
args,
train_data,
input_shape,
val_data,
outpath,
deap_config=None):
start = time.time()
model.summary()
model_plot = path.join(outpath, f"{args.model}_{args.tag}.png")
tf.keras.utils.plot_model(model, to_file=model_plot,
show_shapes=True, show_layer_names=True,
dpi=320)
print(f"Saved model img to {model_plot}")
model_json = model.to_json(indent=2)
jsonname = os.path.join(outpath, f"model{args.model}_{args.tag}.json")
with open(jsonname, "w") as json_file:
json_file.write(model_json)
if args.dry_run:
print('Dry-running, exiting.')
return
# callbacks
tbpath = path.join(outpath, "tensorboard")
symtbpath = path.join(args.output, "tensorboard", args.tag)
if not os.path.exists(tbpath):
os.makedirs(tbpath)
if not os.path.exists(symtbpath):
os.symlink(tbpath, symtbpath)
print(f"Symlinked {tbpath} -> {symtbpath}")
log_files_list = os.listdir(tbpath)
if log_files_list != []:
for fn in log_files_list:
print(f"Deleting {path.join(tbpath, fn)}")
shutil.rmtree(path.join(tbpath, fn))
# os.makedirs(tbpath)
checkpath = path.join(outpath, 'checkpoint/')
if not os.path.exists(checkpath):
os.makedirs(checkpath)
tb_callback = tf.keras.callbacks.TensorBoard(log_dir=tbpath,
update_freq='epoch',
profile_batch=0,
# histogram_freq=5,
write_graph=True,
write_images=True)
if args.dataset == "deap":
test_data, val_data = val_data
available = deap_config["files"]["available"]
train_available = available["train"]
validation_available = available["test"]
train_batches = int(train_available / args.batch)
validation_batches = int(validation_available / args.batch)
print(
f"DEAP: training on {train_available} samples, {train_batches} batches")
print(
f" testing on {validation_available} samples, {validation_batches} batches")
args.steps = train_batches
funname = 'accuracy'
monitorname = f"val_{label_names[0]}_out_accuracy"
if len(label_names) == 1:
monitorname = 'accuracy'
elif args.dataset == "opportunity":
test_data = None
validation_batches = None
monitorname = f"{label_names[0]}_out_fmeasure"
if len(label_names) == 1:
monitorname = 'fmeasure'
evaluator = Evaluator(label_names)
eval_dir = path.join(outpath, 'evaluation')
if not os.path.isdir(eval_dir):
os.makedirs(eval_dir)
eval_callback = EvaluationCallback(
val_data, label_names, num_classes, eval_dir)
check_name = path.join(checkpath, f'{args.model}_{args.tag}.hdf5')
check_callback = tf.keras.callbacks.ModelCheckpoint(check_name,
monitor=monitorname,
save_best_only=True,
mode='max',
# period=1,
save_freq='epoch',
save_weights_only=False)
print(f"Checkpoint callback is monitoring the {monitorname} metric")
optimizer = shared.build_optimizer(args.optimizer_args)
print('Initiating the training phase ...')
print("Hyperparameter summary:")
optimizer_string = "default Adagrad(1.0)" if args.optimizer_args is None \
else f"{args.optimizer_args['name']} with kwargs {jsons.dumps(args.optimizer_args['kwargs'])}"
print(f" Epochs: {args.epochs}")
print(f" Batch size: {args.batch}")
print(f" Tasks: {', '.join(label_names)}")
print(
f" Loss weights: [{', '.join(str(lw) for lw in args.loss_weights)}]")
print(
f" Optimizer: {optimizer_string}")
metrics = shared.generate_metrics_dict(
label_names, num_classes, args, dataset=args.dataset)
losses = generate_loss_dict(label_names, args)
class_weight = generate_class_weights(
label_names,
num_classes,
null_weight=args.null_weight,
non_null_weight=args.non_null_weight)
model.compile(optimizer=optimizer,
loss=losses,
loss_weights=args.loss_weights,
metrics=metrics,
# metrics=['acc', fmeasure]
)
if args.dataset == "deap":
callbacks = [
tb_callback,
# check_callback
]
elif args.dataset == 'opportunity':
callbacks = [
tb_callback,
check_callback,
eval_callback
]
hist = model.fit(
train_data,
verbose=1,
epochs=args.epochs,
steps_per_epoch=args.steps,
validation_data=test_data,
validation_steps=validation_batches,
# class_weight=class_weight,
callbacks=callbacks)
history = hist.history
history_file = os.path.join(outpath, "history.json")
with open(history_file, "w") as hf:
j = jsons.dumps(history, indent=2)
hf.write(j)
print(f"Wrote {history_file}")
# Save the weights of the network
model_json = model.to_json()
jsonname = os.path.join(outpath, f"model{args.model}_{args.tag}.json")
with open(jsonname, "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
hdfname = os.path.join(outpath, f"model{args.model}_{args.tag}_weights.h5")
model.save_weights(hdfname)
print("Saved model to folder:" + outpath)
final_name = path.join(
outpath, f'{args.model}_{args.tag}_model+weights.hdf5')
model.save(final_name)
print('##############################################')
end = time.time()
print('Total time used: %.2f seconds' % (end-start))
print(f'Tensorboard log file generated in the directory {tbpath}')
print('Use the command')
print(f' tensorboard --logdir {tbpath}')
print('to read it')
print()
print('##############################################')
if __name__ == "__main__":
# parser = utils.app.build_parser()
args = parse_args(model_choices)
if args.dataset is not None:
args.output = args.output.replace("$dataset$", args.dataset.upper())
else:
raise ValueError()
outpath = os.path.join(args.output, args.model, args.tag)
logfile = os.path.join(outpath, f"{args.model}_{args.tag}.log")
if not path.isdir(outpath):
os.makedirs(outpath)
with open(logfile, 'w') as log:
sys.stdout = Unbuffered(sys.stdout, log)
print(f"Logging to {logfile}")
print_arguments(args)
if not path.exists(outpath):
os.makedirs(outpath)
if args.dataset == 'deap':
deap_folder = args.deap_path
label_names, num_classes, all_names = select_channels_deap(
args.labels)
#deap_shape = args.deap_shape
train_data, val_data, input_shape, deap_config = load_deap_data(
args, selected_names=label_names)
elif args.dataset == 'opportunity':
nbSensors = args.opportunity_num_sensors
if nbSensors == 107:
pathExtension = path.join(
'all_sensors', str(args.opportunity_time_window))
else:
pathExtension = f'{nbSensors}_highest_var_sensors'
channels = args.labels
dataPath = path.join(args.opportunity_path, pathExtension)
train_data, val_data, input_shape, label_names, num_classes = load_opportunity_data_mtl_tf(
dataPath, args)
deap_config = None
else:
raise ValueError
mtl_model = build_mtl_model(
args, input_shape, label_names, num_classes)
train_mtl_model(model=mtl_model,
label_names=label_names,
args=args,
train_data=train_data,
val_data=val_data,
input_shape=input_shape,
outpath=outpath,
deap_config=deap_config)