-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_train_decoder.py
149 lines (130 loc) · 6.11 KB
/
main_train_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch.optim
import os
import pickle
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from torch.utils.data import DataLoader
import argparse
import neuralsim
import decoders.rnn
import decoders.ridge
import data_loading as data_loading
# parse training options
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--dataset', type=str, default="dataset_20231012_250sec_random.pkl")
parser.add_argument('-o', '--save_name', type=str, default=None)
parser.add_argument('-fb', '--fake_brain', type=str, default=None)
parser.add_argument('--decoder_type', type=str, default='rnn')
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--train_data_frac', type=float, default=0.8)
parser.add_argument('--seq_len', type=int, default=20)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--no_plot', action='store_false')
parser.add_argument('--no_save', action='store_false')
args = parser.parse_args()
dataset_fname = args.dataset
save_name = args.save_name
decoder_type = args.decoder_type
epochs = args.epochs
train_data_frac = args.train_data_frac
seq_len = args.seq_len
batch_size = args.batch_size
plot_training = args.no_plot
save_decoder = args.no_save
# load movement data
if not dataset_fname.endswith(".pkl"):
dataset_fname += ".pkl"
with open(os.path.join("data", "movedata", dataset_fname), 'rb') as f:
df = pickle.load(f)
pos = np.stack(df.current_position.to_numpy()) # shape (num_timepts, num_dof)
vel = np.vstack((np.zeros((1, pos.shape[1])), pos[1:, :] - pos[:-1, :])) # vel is the derivative of pos
posvel = np.hstack((pos, vel))
num_trials = df.trial_number.iloc[-1] - df.trial_number.iloc[0]
num_secs = (df.timestep.iloc[-1] - df.timestep.iloc[0]) / 1000
num_dof = pos.shape[1]
print(f"Loaded {num_trials} trials, with {num_secs:.1f} seconds of data")
print(f"Number of samples: {posvel.shape[0]}")
# load fake brain
if args.fake_brain is None:
raise ValueError("Must specify a fake brain")
if not args.fake_brain.endswith(".pkl"):
args.fake_brain += ".pkl"
with open(os.path.join("data", "fakebrains", args.fake_brain), 'rb') as f:
fake_brain, num_chans, brain_num_dof = pickle.load(f)
assert brain_num_dof == num_dof
print(f"Loaded fake brain: {args.fake_brain}")
# neural_sim = neuralsim.LogLinUnitGenerator(num_chans, num_dof, pos_mult=0.5, vel_mult=2, noise_level=neural_noise_level)
# generate fake neural data from the movements
neural = fake_brain.generate(pos=pos, vel=vel) # shape (num_timepts, num_chans)
# split train/test
x_train, x_test, y_train, y_test = train_test_split(neural, posvel, train_size=train_data_frac, shuffle=False)
# normalize inputs & outputs
neural_scaler = StandardScaler()
neural_scaler.fit(x_train)
x_train_norm = neural_scaler.transform(x_train)
x_test_norm = neural_scaler.transform(x_test)
output_scaler = StandardScaler()
output_scaler.fit(y_train)
y_train_norm = output_scaler.transform(y_train)
y_test_norm = output_scaler.transform(y_test)
# add time history (results in tensor of shape (num_samples, num_chans, seq_len))
x_train_norm_hist = data_loading.add_time_history(x_train_norm, seq_len=seq_len)
x_test_norm_hist = data_loading.add_time_history(x_test_norm, seq_len=seq_len)
# setup dataloaders
dataset_train = data_loading.SequenceDataset(x_train_norm_hist, torch.tensor(y_train_norm))
dataset_test = data_loading.SequenceDataset(x_test_norm_hist, torch.tensor(y_test_norm))
loader_train = DataLoader(dataset_train, batch_size=batch_size, shuffle=True, drop_last=True)
loader_test = DataLoader(dataset_test, batch_size=len(dataset_test), shuffle=False, drop_last=False)
# create and train decoder
num_outputs = 2 * num_dof # both pos & vel for each dof
if decoder_type == 'ridge':
num_inputs_rr = x_train_norm_hist.shape[1] * x_train_norm_hist.shape[2]
model = decoders.ridge.RidgeRegression(num_inputs_rr, num_outputs, lmbda=0.1)
model.fit(x_train_norm_hist, y_train_norm)
y, yhat, _, _ = model.eval_perf(x_test_norm_hist, y_test_norm)
y = output_scaler.inverse_transform(y)
yhat = output_scaler.inverse_transform(yhat)
loss_history = None
elif decoder_type == 'rnn':
# setup model and optimizer (we use the default hyperparams stored in the rnn.py module)
device = torch.device('cuda:0') if torch.cuda.is_available() else 'cpu'
model = decoders.rnn.RNN(num_chans, num_outputs, hidden_size=decoders.rnn.RNN_CONFIG["hidden_size"], device=device)
optimizer = torch.optim.Adam(model.parameters(),
lr=decoders.rnn.RNN_CONFIG["lr"],
weight_decay=decoders.rnn.RNN_CONFIG["weight_decay"])
loss_fn = torch.nn.MSELoss()
# train & evaluate accuracy
loss_history = model.fit(loader_train, optimizer, loss_fn, epochs, verbose=True)
y, yhat, _, _ = model.eval_perf(loader_test)
y = output_scaler.inverse_transform(y)
yhat = output_scaler.inverse_transform(yhat)
else:
raise ValueError(f"Invalid decoder type: {decoder_type}")
if plot_training:
if loss_history is not None:
plt.plot(loss_history)
plt.title("Training Loss by Epoch (normalized units)")
plt.show()
fig, axs = plt.subplots(2, num_dof, figsize=(num_dof * 3, 5))
axs = axs.flatten()
for i in range(num_dof * 2):
axs[i].plot(y[:, i], label="ground truth")
axs[i].plot(yhat[:, i], label="predicted")
pvtype = "pos" if i < num_dof else "vel"
axs[i].set_title(f"Dof {i % num_dof}: {pvtype}")
axs[num_dof-1].legend()
plt.tight_layout()
plt.show()
# save decoder to file
if save_decoder:
if save_name is None:
save_name = f"decoder_{decoder_type}_{dataset_fname}"
if not save_name.endswith(".pkl"):
save_name += ".pkl"
if decoder_type == 'rnn':
seq_len = 1 # for online RNNs we maintain a hidden state and only need one timestep
with open(os.path.join("data", "trained_decoders", save_name), 'wb') as f:
pickle.dump((model, fake_brain, neural_scaler, output_scaler, seq_len), f)
print(f"Saved decoder to {save_name}")