-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
200 lines (168 loc) · 7.14 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import argparse
import os
import sys
import aiohttp
import os
import numpy as np
import yaml
import tifffile as tiff
import logging as log
log.basicConfig(level=log.INFO)
pattern_split_dataset = lambda path, ext, split: path.replace(ext, f"_{split}{ext}")
pattern_stats = lambda path, ext, split, channelwise: path.replace(ext, f"_{split}_mean_std_{'channelwise' if channelwise else 'global'}.npy")
def load_datasets_yml(dataset_yml="datasets.yml"):
with open(dataset_yml, "r") as f:
datasets = yaml.load(f, Loader=yaml.FullLoader)
return datasets['DATASETS']
async def download_datasets(dataset_yml="datasets.yml"):
'''
Download datasets from the urls provided in the datasets.yml file
Args:
dataset_yml: str
Path to the datasets.yml file.
Should have the structure:
DATASETS:
- path: path/to/dataset
- url: url/to/dataset
'''
DATASETS = load_datasets_yml(dataset_yml)
async with aiohttp.ClientSession() as session:
for dataset in DATASETS:
path = dataset["path"]
url = dataset["url"]
os.makedirs(path, exist_ok=True)
async with session.get(url) as response:
with open(path, "wb") as f:
f.write(await response.read())
def load_split_datasets(dataset_name, dataset_yml='datasets.yml', channelwise_stats=True):
'''
Load precomputed splits for a dataset defined in datasets.yml.
Also loads statistics.
Args:
dataset_name: str
Name of the dataset in the datasets.yml file
dataset_yml: str
Path to the datasets.yml file
channelwise_stats: bool
Whether to load channelwise statistics or global statistics
Returns:
((Train_dataset, Val_dataset), (Train_mean, Train_std), (Val_mean, Val_std))
'''
yml = load_datasets_yml(dataset_yml)
dataset = None
for d in yml:
if d["name"] == dataset_name:
dataset = d
break
if dataset is None:
raise ValueError(f"Dataset {dataset_name} not found in the datasets.yml file")
ext = '.tiff' if '.tiff' in dataset["path"] else '.tif'
train_path = pattern_split_dataset(dataset["path"], ext, "train")
val_path = pattern_split_dataset(dataset["path"], ext, "val")
train = tiff.imread(train_path)
val = tiff.imread(val_path)
train_stats = pattern_stats(dataset["path"], ext, "train", channelwise=channelwise_stats)
val_stats = pattern_stats(dataset["path"], ext, "val", channelwise=channelwise_stats)
train_mean, train_std = np.load(train_stats)
val_mean, val_std = np.load(val_stats)
return (train, val), (train_mean, train_std), (val_mean, val_std)
def load_tiff(path, take_N=-1):
"""
Load a TIFF dataset from a path
Args:
- path: str
Path to the dataset
- take_N: int
Number of images to take from the dataset. Default is -1, which means all images
Returns:
- dataset: np.array
The dataset
"""
dataset = tiff.imread(path)
if take_N != -1:
log.warning(f"Taking only {take_N} images from the dataset")
dataset = dataset[:take_N]
return dataset
def iter_tiff_batch(path: str, batch_size: int):
"""
Loads a TIFF file and yelds batches of size batch_size.
File is supposed to be in format [N, C, H, W] or [N, H, W]
Args:
- path: str
- batch_size: int
"""
data = tiff.imread(path)
N = data.shape[0]
for i in range(0, N, batch_size):
yield data[i:i+batch_size]
def split_dataset(dataset_path, split_ratio=0.8, shuffle=True, take_N=-1, seed=None):
"""
Splits a dataset into train and validation sets and saves them as TIFF files.
Also calculates the dataset statistics and saves them as a numpy file.
Args:
- dataset_path: str
Path to the tiff dataset
- split_ratio: float [0.8]
Ratio to split the dataset into train and validation
- shuffle: bool [True]
Whether to shuffle the dataset before splitting
- take_N: int [-1]
Number of images to take from the dataset. Default is -1, which means all images
- seed: int [None]
Seed for the random number generator.
"""
dataset = load_tiff(dataset_path, take_N=take_N)
split_idx = int(len(dataset) * split_ratio)
if shuffle:
log.info("Shuffling dataset")
if seed:
log.info(f"Using seed {seed}")
np.random.seed(seed)
np.random.shuffle(dataset)
train, val = dataset[:split_idx], dataset[split_idx:]
# Saving the datasets
ext = '.tiff' if '.tiff' in dataset_path else '.tif'
if ext not in dataset_path:
raise ValueError(f"Dataset path should have .tif or .tiff extension. Got {dataset_path}")
dpath = dataset_path.replace(ext, f"_train{ext}")
tiff.imwrite(dpath, data=train)
log.info(f"Train dataset saved to {dpath}")
dpath = dataset_path.replace(ext, f"_val{ext}")
tiff.imwrite(dpath, data=val)
log.info(f"Validation dataset saved to {dpath}")
# Calculating and saving the dataset statistics.
# Data shape is assumed to be (N, C, H, W)
for dset, name in zip([train, val], ["train", "val"]):
mean = np.mean(dset, axis=(0))
std = np.std(dset, axis=(0))
dpath = dataset_path.replace(ext, f"_{name}_mean_std_channelwise.npy")
np.save(dpath, np.array([mean, std]))
log.info(f"Dataset channelwise statistics saved to {dpath}")
glob_mean = np.mean(dset, axis=(0, 1))
glob_std = np.std(dset, axis=(0, 1))
dpath = dataset_path.replace(ext, f"_{name}_mean_std_global.npy")
np.save(dpath, np.array([glob_mean, glob_std]))
log.info(f"Dataset global statistics saved to {dpath}")
async def main():
# await download_datasets()
if args.download:
await download_datasets()
# Load datasets
datasets = load_datasets_yml()
for dataset_descr in datasets:
if args.split:
split_dataset(dataset_descr["path"], split_ratio=args.split_ratio, shuffle=args.shuffle, take_N=args.N, seed=args.seed)
if __name__ == "__main__":
# Parse arguments
parser = argparse.ArgumentParser(description='AI4Life Dataset Handler')
parser.add_argument('--download', action='store_true', help='Download datasets')
#Take only N first images from the dataset
parser.add_argument('--N', type=int, default=-1, help='Number of images to take from the dataset. Default is -1, which means all images')
parser.add_argument('--cache_augmentations', action='store_true', help='Cache augmentations')
parser.add_argument('--split', action='store_true', help='Split dataset into train and validation')
parser.add_argument('--split_ratio', type=float, default=0.8, help='Split ratio for the dataset')
parser.add_argument('--shuffle', action='store_true', help='Shuffle the dataset before splitting', default=True)
parser.add_argument('--seed', type=int, default=None, help='Seed for the random number generator')
args = parser.parse_args()
import asyncio
asyncio.run(main())