-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathsetup.py
62 lines (50 loc) · 1.78 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from __future__ import absolute_import
from setuptools import setup, find_packages
from os import path
_dir = path.abspath(path.dirname(__file__))
with open(path.join(_dir, 'n2v', 'version.py')) as f:
exec(f.read())
with open(path.join(_dir, 'README.md'), encoding='UTF-8') as f:
long_description = f.read()
setup(name='n2v',
version=__version__,
description='Noise2Void allows the training of a denoising CNN from individual noisy images. This implementation'
'extends CSBDeep.',
long_description=long_description,
long_description_content_type='text/markdown',
url='https://github.com/juglab/n2v/',
author='Tim-Oliver Buchholz, Alexander Krull',
author_email='[email protected], [email protected]',
license='BSD 3-Clause License',
packages=find_packages(),
project_urls={
'Repository': 'https://github.com/juglab/n2v/',
},
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Science/Research',
'Topic :: Scientific/Engineering',
'License :: OSI Approved :: BSD License',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
],
scripts=[
'scripts/trainN2V.py',
'scripts/predictN2V.py'
],
install_requires=[
"numpy",
"tifffile",
"imagecodecs>=2020.2.18",
"backports.tempfile;python_version<'3.4'",
"csbdeep>=0.7.2,<0.8.0",
"Pillow",
"ruamel.yaml>=0.16.10",
"bioimageio.core"
],
extras_require={
"testing": ["pytest"]
}
)