-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvolumetric_layering.py
326 lines (265 loc) · 13.1 KB
/
volumetric_layering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# adapt the output so that files can also be saved in other formats than nifti
import argparse
import numpy as np
import nibabel as nb
import cbstoolsjcc
import os
from io_volume import load_volume, save_volume
from io_mesh import load_mesh_geometry, save_mesh_geometry
def create_levelsets(tissue_prob_img, save_data=True, base_name=None):
'''
Creates levelset surface representations from a tissue classification.
Parameters
-----------
tissue_prob_img : Tissue segmentation to be turned into levelset.
Either a binary tissue classfication with value 1 inside and 0
outside the to-be-created surface, or ????
Can be a path to a Nifti file or Nibabel image object.
save_data : Whether the output levelset image should be saved
(default is 'True').
base_name : If save_data is set to True, this parameter can be used to
specify where the output should be saved. Thus can be the path to a
directory or a full filename. The suffix 'levelset' will be added
to the filename. If None (default), the output will be saved to the
current directory.
Returns
-------
Levelset representation of surface as Nibabel image object
'''
# load the data as well as filenames and headers for saving later
prob_img = load_volume(tissue_prob_img)
prob_data = prob_img.get_data()
hdr = prob_img.get_header()
aff = prob_img.get_affine()
try:
cbstoolsjcc.initVM(initialheap='6000m', maxheap='6000m')
except ValueError:
pass
prob2level = cbstoolsjcc.SurfaceProbabilityToLevelset()
prob2level.setProbabilityImage(cbstoolsjcc.JArray('float')((prob_data.flatten('F')).astype(float)))
prob2level.setDimensions(prob_data.shape)
zooms = [x.item() for x in hdr.get_zooms()]
prob2level.setResolutions(zooms[0], zooms[1], zooms[2])
prob2level.execute()
levelset_data = np.reshape(np.array(prob2level.getLevelSetImage(),
dtype=np.float32), prob_data.shape, 'F')
levelset_img = nb.Nifti1Image(levelset_data, aff, hdr)
if save_data:
if base_name:
base_name += '_'
else:
if not isinstance(tissue_prob_img, basestring):
base_name = os.getcwd() + '/'
print "saving to %s" % base_name
else:
dir_name = os.path.dirname(tissue_prob_img)
base_name = os.path.basename(tissue_prob_img)
base_name = os.path.join(dir_name,
base_name[:base_name.find('.')]) + '_'
save_volume(base_name+'levelset.nii.gz', levelset_img)
return levelset_img
def layering(gwb_levelset, cgb_levelset, n_layers=10, lut_dir='lookuptables/',
save_data=True, base_name=None):
'''
Equivolumetric layering of the cortical sheet.
Waehnert et al. (2014). Anatomically motivated modeling of cortical
laminae. http://doi.org/10.1016/j.neuroimage.2013.03.078
Parameters
-----------
gwb_levelset : Levelset representation of the GM/WM surface. Can be
created from tissue segmentation with the "create_levelsets"
function. Can be path to a Nifti file or Nibabel image object.
cgb_levelset : Levelset representation of the CSF/GM surface. Can be
created from tissue segmentation with the "create_levelsets"
function. Can be path to a Nifti file or Nibabel image object.
n_layers : int, number of layers to be created.
lut_dir : Path to directory with lookup tables. Default is to search it
within this directory.
save_data : Whether the output layer image should be saved
(default is 'True').
base_name : If save_data is set to True, this parameter can be used to
specify where the output should be saved. Thus can be the path to a
directory or a full filename. The suffixes 'depth', 'layers' and
'boundaries' will be added to the respective outputs. If None
(default), the output will be saved to the current directory.
Returns
-------
Three Nibabel image objects :
Continuous depth from 0(WM) to 1(CSF)
Discrete layers from 1(bordering WM) to n_layers(bordering CSF)
Levelset representations of boundaries between layers (4D)
'''
# load the data as well as filenames and headers for saving later
gwb_img = load_volume(gwb_levelset)
gwb_data = gwb_img.get_data()
hdr = gwb_img.get_header()
aff = gwb_img.get_affine()
cgb_data = load_volume(cgb_levelset).get_data()
try:
cbstoolsjcc.initVM(initialheap='6000m', maxheap='6000m')
except ValueError:
pass
lamination = cbstoolsjcc.LaminarVolumetricLayering()
lamination.setDimensions(gwb_data.shape[0], gwb_data.shape[1], gwb_data.shape[2])
zooms = [x.item() for x in hdr.get_zooms()]
lamination.setResolutions(zooms[0], zooms[1], zooms[2])
lamination.setInnerDistanceImage(cbstoolsjcc.JArray('float')((gwb_data.flatten('F')).astype(float)))
lamination.setOuterDistanceImage(cbstoolsjcc.JArray('float')((cgb_data.flatten('F')).astype(float)))
lamination.setNumberOfLayers(n_layers)
lamination.setTopologyLUTdirectory(lut_dir)
lamination.execute()
depth_data=np.reshape(np.array(lamination.getContinuousDepthMeasurement(), dtype=np.float32),gwb_data.shape,'F')
layer_data=np.reshape(np.array(lamination.getDiscreteSampledLayers(), dtype=np.uint32),gwb_data.shape,'F')
boundary_len = lamination.getLayerBoundarySurfacesLength()
boundary_data=np.reshape(np.array(lamination.getLayerBoundarySurfaces(), dtype=np.float32),
(gwb_data.shape[0], gwb_data.shape[1],
gwb_data.shape[2],
boundary_len), 'F')
depth_img = nb.Nifti1Image(depth_data, aff, hdr)
layer_img = nb.Nifti1Image(layer_data, aff, hdr)
boundary_img = nb.Nifti1Image(boundary_data, aff, hdr)
if save_data:
if base_name:
base_name += '_'
else:
if not isinstance(gwb_levelset, basestring):
base_name = os.getcwd() + '/'
print "saving to %s" % base_name
else:
dir_name = os.path.dirname(gwb_levelset)
base_name = os.path.basename(gwb_levelset)
base_name = os.path.join(dir_name,
base_name[:base_name.find('.')]) + '_'
save_volume(base_name + 'depth.nii.gz', depth_img)
save_volume(base_name + 'layers.nii.gz', layer_img)
save_volume(base_name + 'boundaries.nii.gz', boundary_img)
return depth_img, layer_img, boundary_img
def profile_sampling(boundary_img, intensity_img,
save_data=True, base_name=None):
'''
Sampling data on multiple intracortical layers.
Parameters
-----------
boundary_img : Levelset representations of different intracortical
layers in a 4D image (4th dimensions representing the layers).
Can be created from GM and WM leveset with the "layering" function.
Can be path to a Nifti file or Nibabel image object.
intensity_img : Image from which data should be sampled. Can be path to
a Nifti file or Nibabel image object.
save_data : Whether the output profile image should be saved
(default is 'True').
base_name : If save_data is set to True, this parameter can be used to
specify where the output should be saved. Thus can be the path to a
directory or a full filename. The suffix 'profiles' will be added
to filename. If None (default), the output will be saved to the
current directory.
Returns
-------
Nibabel image object (4D), where the 4th dimension represents the
different cortical surfaces, i.e. the profile for each voxel in the
3D space.
'''
# load the data as well as filenames and headers for saving later
boundary_img = load_volume(boundary_img)
boundary_data = boundary_img.get_data()
hdr = boundary_img.get_header()
aff = boundary_img.get_affine()
intensity_data = load_volume(intensity_img).get_data()
try:
cbstoolsjcc.initVM(initialheap='6000m', maxheap='6000m')
except ValueError:
pass
sampler = cbstoolsjcc.LaminarProfileSampling()
sampler.setIntensityImage(cbstoolsjcc.JArray('float')((intensity_data.flatten('F')).astype(float)))
sampler.setProfileSurfaceImage(cbstoolsjcc.JArray('float')((boundary_data.flatten('F')).astype(float)))
zooms = [x.item() for x in hdr.get_zooms()]
sampler.setResolutions(zooms[0], zooms[1], zooms[2])
sampler.setDimensions(boundary_data.shape)
sampler.execute()
profile_data = np.reshape(np.array(sampler.getProfileMappedIntensityImage(),
dtype=np.float32), boundary_data.shape,'F')
profile_img = nb.Nifti1Image(profile_data, aff, hdr)
if save_data:
if base_name:
base_name += '_'
else:
if not isinstance(intensity_img, basestring):
base_name = os.getcwd() + '/'
print "saving to %s" % base_name
else:
dir_name = os.path.dirname(intensity_img)
base_name = os.path.basename(intensity_img)
base_name = os.path.join(dir_name,
base_name[:base_name.find('.')]) + '_'
save_volume(base_name+'profiles.nii.gz', profile_img)
return profile_img
# There is something wrong with this, all the created surfaces have the same
# vertex coordinates
def profile_meshing(profile_file, surf_mesh, save_data=True, base_name=None):
'''
Converting the levelset representation of multiple intracorticle surfaces
into multiple surface meshes.
Parameters
-----------
profile_file : Levelset representations of different intracortical
layers in a 4D image (4th dimensions representing the layers).
Can be created from GM and WM leveset with the "layering" function.
Can be path to a Nifti file or Nibabel image object.
surf_mesh : Original surface mesh serving as a reference for the
topology of all intracortical surfaces.
save_data : Whether the output meshes should be saved
(default is 'True').
base_name : If save_data is set to True, this parameter can be used to
specify where the output should be saved. Thus can be the path to a
directory or a full filename. A suffix indicating the number of the
layer will be added. If None (default), the output will be saved to
the current directory.
Returns
-------
A list of intracortical surface meshes, each represented as a
dictionary with entries 'coords' and 'faces'
'''
profile_img = load_volume(profile_file)
profile_data = profile_img.get_data()
profile_len = profile_data.shape[3]
hdr = profile_img.get_header()
aff = profile_img.get_affine()
in_coords = load_mesh_geometry(surf_mesh)['coords']
in_faces = load_mesh_geometry(surf_mesh)['faces']
try:
cbstoolsjcc.initVM(initialheap='6000m', maxheap='6000m')
except ValueError:
pass
mesher = cbstoolsjcc.LaminarProfileMeshing()
mesher.setDimensions(profile_data.shape)
zooms = [x.item() for x in hdr.get_zooms()]
mesher.setResolutions(zooms[0], zooms[1], zooms[2])
mesher.setProfileSurfaceImage(cbstoolsjcc.JArray('float')((profile_data.flatten('F')).astype(float)))
mesher.setInputSurfacePoints(cbstoolsjcc.JArray('float')(in_coords.flatten().astype(float)))
mesher.setInputSurfaceTriangles(cbstoolsjcc.JArray('int')(in_faces.flatten().astype(int)))
mesher.execute()
out_coords = np.zeros((in_coords.shape[0], in_coords.shape[1], profile_len))
out_faces = np.zeros((in_faces.shape[0], in_faces.shape[1], profile_len))
mesh_list = []
for i in range(profile_len):
current_mesh = {}
current_mesh['coords'] = np.reshape(np.array(mesher.getSampledSurfacePoints(i),
dtype=np.float32),in_coords.shape)
current_mesh['faces'] = np.reshape(np.array(mesher.getSampledSurfaceTriangles(i),
dtype=np.float32),in_faces.shape)
mesh_list.append(current_mesh)
if save_data:
if base_name:
base_name += '_'
else:
if not isinstance(profile_file, basestring):
base_name = os.getcwd() + '/'
print "saving to %s" % base_name
else:
dir_name = os.path.dirname(intensity_img)
base_name = os.path.basename(intensity_img)
base_name = os.path.join(dir_name,
base_name[:base_name.find('.')]) + '_'
for i in range(len(mesh_list)):
save_mesh_geometry(base_name + '%s.vtk' % str(i), mesh_list[i])
return mesh_list