forked from EEA-sensors/ekfukf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrts_smooth.m
114 lines (109 loc) · 3.33 KB
/
crts_smooth.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
function [M,P,D] = crts_smooth(M,P,f,Q,f_param,same_p)
% CRTS_SMOOTH - Additive form cubature Rauch-Tung-Striebel smoother
%
% Syntax:
% [M,P,D] = CKF_SMOOTH(M,P,a,Q,[param,same_p])
%
% In:
% M - NxK matrix of K mean estimates from Cubature Kalman filter
% P - NxNxK matrix of K state covariances from Cubature Kalman Filter
% f - Dynamic model function as a matrix F defining
% linear function f(x) = F*x, inline function,
% function handle or name of function in
% form f(x,param) (optional, default eye())
% Q - NxN process noise covariance matrix or NxNxK matrix
% of K state process noise covariance matrices for each step.
% f_param - Parameters of f. Parameters should be a single cell array,
% vector or a matrix containing the same parameters for each
% step, or if different parameters are used on each step they
% must be a cell array of the format { param_1, param_2, ...},
% where param_x contains the parameters for step x as a cell array,
% a vector or a matrix. (optional, default empty)
% same_p - If 1 uses the same parameters
% on every time step (optional, default 1)
%
% Out:
% M - Smoothed state mean sequence
% P - Smoothed state covariance sequence
% D - Smoother gain sequence
%
% Description:
% Cubature Rauch-Tung-Striebel smoother algorithm. Calculate
% "smoothed" sequence from given Kalman filter output sequence by
% conditioning all steps to all measurements. Uses the spherical-
% radial cubature rule.
%
% Example:
% m = m0;
% P = P0;
% MM = zeros(size(m,1),size(Y,2));
% PP = zeros(size(m,1),size(m,1),size(Y,2));
% for k=1:size(Y,2)
% [m,P] = ckf_predict(m,P,f,Q);
% [m,P] = ckf_update(m,P,Y(:,k),h,R);
% MM(:,k) = m;
% PP(:,:,k) = P;
% end
% [SM,SP] = crts_smooth(MM,PP,f,Q);
%
% See also:
% CKF_PREDICT, CKF_UPDATE, SPHERICALRADIAL
% Copyright (c) 2010 Arno Solin
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
%%
%
% Check which arguments are there
%
if nargin < 4
error('Too few arguments');
end
if nargin < 6
same_p = 1;
end
%
% Apply defaults
%
if isempty(f)
f = eye(size(M,1));
end
if isempty(Q)
Q = zeros(size(M,1));
end
%
% Extend Q if NxN matrix
%
if size(Q,3)==1
Q = repmat(Q,[1 1 size(M,2)]);
end
%
% Run the smoother
%
if nargin < 5
D = zeros(size(M,1),size(M,1),size(M,2));
for k=(size(M,2)-1):-1:1
[m_pred,P_pred,C] = ckf_transform(M(:,k),P(:,:,k),f);
P_pred = P_pred + Q(:,:,k);
D(:,:,k) = C / P_pred;
M(:,k) = M(:,k) + D(:,:,k) * (M(:,k+1) - m_pred);
P(:,:,k) = P(:,:,k) + D(:,:,k) * (P(:,:,k+1) - P_pred) * D(:,:,k)';
end
else
D = zeros(size(M,1),size(M,1),size(M,2));
for k=(size(M,2)-1):-1:1
if isempty(f_param)
params = [];
elseif same_p
params = f_param;
else
params = f_param{k};
end
[m_pred,P_pred,C] = ckf_transform(M(:,k),P(:,:,k),f,params);
P_pred = P_pred + Q(:,:,k);
D(:,:,k) = C / P_pred;
M(:,k) = M(:,k) + D(:,:,k) * (M(:,k+1) - m_pred);
P(:,:,k) = P(:,:,k) + D(:,:,k) * (P(:,:,k+1) - P_pred) * D(:,:,k)';
end
end