forked from EEA-sensors/ekfukf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathekf_predict1.m
105 lines (95 loc) · 2.41 KB
/
ekf_predict1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
%EKF_PREDICT1 1st order Extended Kalman Filter prediction step
%
% Syntax:
% [M,P] = EKF_PREDICT1(M,P,[A,Q,a,W,param])
%
% In:
% M - Nx1 mean state estimate of previous step
% P - NxN state covariance of previous step
% A - Derivative of a() with respect to state as
% matrix, inline function, function handle or
% name of function in form A(x,param) (optional, default eye())
% Q - Process noise of discrete model (optional, default zero)
% a - Mean prediction E[a(x[k-1],q=0)] as vector,
% inline function, function handle or name
% of function in form a(x,param) (optional, default A(x)*X)
% W - Derivative of a() with respect to noise q
% as matrix, inline function, function handle
% or name of function in form W(x,param) (optional, default identity)
% param - Parameters of a (optional, default empty)
%
% Out:
% M - Updated state mean
% P - Updated state covariance
%
% Description:
% Perform Extended Kalman Filter prediction step.
%
% See also:
% EKF_UPDATE1, EKF_PREDICT2, EKF_UPDATE2, DER_CHECK,
% LTI_DISC, KF_PREDICT, KF_UPDATE
% Copyright (C) 2002-2006 Simo Särkkä
%
% $Id$
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
function [M,P] = ekf_predict1(M,P,A,Q,a,W,param)
%
% Check arguments
%
if nargin < 3
A = [];
end
if nargin < 4
Q = [];
end
if nargin < 5
a = [];
end
if nargin < 6
W = [];
end
if nargin < 7
param = [];
end
%
% Apply defaults
%
if isempty(A)
A = eye(size(M,1));
end
if isempty(Q)
Q = zeros(size(M,1));
end
if isempty(W)
W = eye(size(M,1),size(Q,2));
end
if isnumeric(A)
% nop
elseif ischar(A) | strcmp(class(A),'function_handle')
A = feval(A,M,param);
else
A = A(M,param);
end
%
% Perform prediction
%
if isempty(a)
M = A*M;
elseif isnumeric(a)
M = a;
elseif ischar(a) | strcmp(class(a),'function_handle')
M = feval(a,M,param);
else
M = a(M,param);
end
if isnumeric(W)
% nop
elseif ischar(W) | strcmp(class(W),'function_handle')
W = feval(W,M,param);
else
W = W(M,param);
end
P = A * P * A' + W * Q * W';